Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • 31st ITER Council | Addressing challenges

    The project's governing body, the ITER Council, convened for the 31st time in its history on 16 and 17 November to evaluate the progress of construction, m [...]

    Read more

  • Machine assembly | Key components to be repaired

    When building a machine as large and as complex as ITER, difficulties and setbacks do not come as surprises—they are an integral part of manufacturing, assembli [...]

    Read more

  • Space management | Optimizing every square metre

    Building management is a constant challenge at ITER. The American statesman Ben Franklin is credited with saying that a successful organization requires 'a plac [...]

    Read more

  • Radio Frequency Building | Installing the first power supply sets

    When the plasma in the ITER vacuum vessel is fed sufficient power, the velocity that the particles acquire causes them to collide, fuse and generate considerabl [...]

    Read more

  • Fusion history | H-mode, the discovery that made ITER possible

    Forty years ago, the scientists in the ASDEX tokamak control room at the Max Planck Institute for Plasma Physics (IPP) in Germany sat up straight. Somethin [...]

    Read more

Of Interest

See archived entries

Image of the week

Sandblasting

Whether at home or in a nuclear installation, a painting job begins with surface preparation. In the ITER Tokamak Pit, close to 3,000 square metres of wall need to be sandblasted prior to being coated with thick, smooth, decontaminable "nuclear paint."

30 tonnes of abrasive sand projected with high pressure on the inside wall of the Tokamak Pit have created the rough surface that optimizes nuclear paint adherence. (Click to view larger version...)
30 tonnes of abrasive sand projected with high pressure on the inside wall of the Tokamak Pit have created the rough surface that optimizes nuclear paint adherence.
Working in two shifts from five suspended platforms, workers have used more than 30 tonnes of abrasive sand to create a rough surface that optimizes paint adherence.

The operation, which began in mid-March, should be finalized this week. Painting will begin in earnest shortly, as soon as hot air blowers have brought the vast volume of the Pit (25,000 cubic metres) to the required temperature of ~20 °C.


return to the latest published articles