Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

Heat removal

Moving 10 tonnes of water per second

If ITER were a fusion power plant, the amount of heat produced by the machine would be partly absorbed by the steam generators and turbines that initiate the electricity-generating process. But ITER is neither a fusion power plant nor a steady-state device: it is an experimental machine designed to demonstrate the technical feasibilityof fusion energy. As it will operate in pulses, the heat production will only occur during relatively brief plasma shots (between five minutes and one hour depending on the regime). And the totality of the heat generated will need to be evacuated, requiring a properly designed heat rejection system.

The installation of 10-metre long shafts for the 13 vertical turbine pumps is underway now. Each pump is designed to move one tonne of water per second. (Click to view larger version...)
The installation of 10-metre long shafts for the 13 vertical turbine pumps is underway now. Each pump is designed to move one tonne of water per second.
Burning plasmas are not the only source of heat in the ITER installation. The compressors and cold boxes in the cryoplant, the transformers and converters in the magnet power conversion buildings, the power supply for the neutral beam injectors ... all this equipment produces significant quantities of heat (although not comparable to that produced inside the ITER Tokamak) that must be extracted at all times through a vast cooling water network comprising kilometres of piping, dozens of pumps, and several thousand valves.

Whatever its source, the cooling water ends up in two 10,000-cubic-metre basins: one "hot," where water is stored before being cooled in the induced-draft cooling tower, and one "cold," which receives the cooled water as it leaves the cooling tower.

The amount of water that needs to be circulated within this system is huge—in the range of 10 cubic metres per second. A set of 13 vertical turbine pumps, submerged deep in the basins, are tasked to move up to one tonne of water per second per pump.

The six-tonne component must be perfectly positioned and balanced to withstand the considerable forces that the rotation of the impeller and the flux of water exert. Horizontal deflection at the bearings cannot exceed 0.05 millimetre. (Click to view larger version...)
The six-tonne component must be perfectly positioned and balanced to withstand the considerable forces that the rotation of the impeller and the flux of water exert. Horizontal deflection at the bearings cannot exceed 0.05 millimetre.
Three of them are dedicated to recirculating the water from the hot basin to the cold basin and balancing the peaks of heat generated by the plasma pulses. Six circulate water from the cold basin through the heat exchangers that receive the heat load from the Tokamak and dump it into the hot basin. Finally, four pumps cool the heat exchangers that take in cooling water from other parts of the installation (cryogenic systems, electric power supplies, etc.).

Installation of the vertical turbine pumps began last week with the insertion, in each pump housing, of the 10-metre-long shaft that will connect the rotor (or impeller) to a powerful 870 kW electrical motor.

In order to withstand the considerable forces that the rotation of the impeller and the flux of water will exert, the component must be perfectly positioned and balanced. The shaft, bearings and impeller are manufactured within 100 microns of tolerance. At the bearings, horizontal deflection cannot exceed 0.05 mm.

Ten shafts are now installed. And the horizontal deflection does not exceed 0.03 millimetres ...


return to the latest published articles