Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | More cladding and a new message

    As the October sun sets on the ITER worksite, the cladding of the neutral beam power buildings takes on a golden hue. One after the other, each of the scientifi [...]

    Read more

  • Cryodistribution | Cold boxes 20 years in the making

    Twenty years—that is how long it took to design, manufacture and deliver the cold valve boxes that regulate the flow of cryogens to the tokamak's vacuum system. [...]

    Read more

  • Open Doors Day | Face to face with ITER immensity

    In October 2011, when ITER organized its first 'Open Doors Day,' there was little to show and much to leave to the public's imagination: the Poloidal Field [...]

    Read more

  • Fusion | Turning neutrons into electricity

    How will the power generated by nuclear fusion reactions be converted into electricity? That is not a question that ITER has been designed to answer explicitly, [...]

    Read more

  • Fusion world | JET completes a storied 40-year run

    In its final deuterium-tritium experimental campaign, Europe's JET tokamak device demonstrated plasma scenarios that are expected on ITER and future fusion powe [...]

    Read more

Of Interest

See archived entries

Pre-compression rings

Six of nine completed

The European Domestic Agency is responsible for the fabrication of nine pre-compression rings (three top, three bottom and three spare). The first five have been successfully tested and delivered.

The pre-compression ring winding table at CNIM (Toulon, France). Six of these composite rings have been manufactured, and five have been delivered to ITER. (Click to view larger version...)
The pre-compression ring winding table at CNIM (Toulon, France). Six of these composite rings have been manufactured, and five have been delivered to ITER.
At the top and bottom of the ITER machine, where the tapered ends of the toroidal field coil structures meet, large composite rings will be installed to help the coils resist electromagnetic forces during operation. These "pre-compression rings" will absorb any deformation or fatigue experienced during operation by the coils.

Weighing roughly 3 tonnes each, with an inner diameter of 5 metres, the rings are among the largest and most highly stressed composite structures to be designed for a cryogenic environment.

It takes a team! The fiberglass laminate used for the pre-compression rings is produced by Exel Composities in Finland, and wound and tested by the team at CNIM in Toulon, France. The test facility/tooling were procured by the ITER Organization through a contract with CNIM/Douce Hydro, based on a conceptual design by the European Domestic Agency. (Click to view larger version...)
It takes a team! The fiberglass laminate used for the pre-compression rings is produced by Exel Composities in Finland, and wound and tested by the team at CNIM in Toulon, France. The test facility/tooling were procured by the ITER Organization through a contract with CNIM/Douce Hydro, based on a conceptual design by the European Domestic Agency.
The first manufacturing steps take place at Exel Composites (Finland), where the fiberglass laminate used for the pre-compression rings is produced. The material is then delivered on spools (in lengths of 2.8 km) to CNIM in Toulon, France, where the team winds it along a helical circular trajectory and applies bonding tape between layers. Next comes curing at 65 °C, final machining and finally testing. The full process—now at maximum efficiency—takes a total of two months.

With six out of the nine rings manufactured, and five fully tested and delivered, the European Domestic Agency and its contractors are approaching the end of the multiyear project. The objective is to deliver the full set of pre-compression rings by mid-2020.

Read the full report on the Fusion for Energy website.


return to the latest published articles