Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • CODAC | The "invisible system" that makes all things possible

    It is easy to spot all the big equipment going into ITER; what is not so visible is the underlying software that makes the equipment come alive. Local control [...]

    Read more

  • Assembly | Zero-gravity in a cramped place

    The volume of the Tokamak pit may be huge, but so are the components that need to be installed. As a result, assembly operators will have very little room to ma [...]

    Read more

  • Image of the week | A closer look at KSTAR

    Over its twelve years of operation, the KSTAR tokamak (for Korea Superconducting Tokamak Advanced Research) has built an extremely valuable database for the fut [...]

    Read more

  • Pre-compression rings | Six of nine completed

    The European Domestic Agency is responsible for the fabrication of nine pre-compression rings (three top, three bottom and three spare). The first five have bee [...]

    Read more

  • Industrial milestone | Japan completes the first D-shaped coil of the ITER Tokamak

    In a ceremony on 30 January, a major industrial achievement was celebrated in Japan—the completion of the first 360-tonne D-shaped toroidal field coil for the I [...]

    Read more

Of Interest

See archived entries

Magnetic system

Nine rings to counter the force

Work on the pre-compression rings of the ITER magnet system is progressing in Europe, where work on a full-scale prototype is underway. These technically challenging components—made of composite materials—are designed to push back against the electromagnetic forces of the ITER machine and reduce the fatigue on the structures of the toroidal field magnets.

At Airbus Defence and Space in Madrid, a pre-compression ring ''slice'' undergoes testing. Well-established aerospace techniques have been useful for the prototype activities on ITER's pre-compression rings, which are certainly the largest composite structures ever designed for use in a cryogenic environment. © AIRBUS D&S Spain (Click to view larger version...)
At Airbus Defence and Space in Madrid, a pre-compression ring ''slice'' undergoes testing. Well-established aerospace techniques have been useful for the prototype activities on ITER's pre-compression rings, which are certainly the largest composite structures ever designed for use in a cryogenic environment. © AIRBUS D&S Spain
The electromagnetic forces acting on the machine structure during operation will be huge—to the order of several hundred meganewtons (MN). Caused by electromagnetic interaction between the toroidal field coil current and the magnetic field generated by the poloidal field coils, these out-of-plane forces will cause stress to the toroidal field coils and, over time, fatigue.

Six pre-compression rings, installed at the top and bottom of the toroidal field coils, will be used to pull the 18 coils tightly together. Measuring five metres in diameter and weighing approximately three tonnes, the pre-compression rings will reduce the fatigue on the magnet structures caused by electro-magnetic forces—consequently prolonging their operational lifetime. Three other rings will be manufactured as spares.

A lengthy R&D program carried out in Europe identified a glass-fibre/epoxy composite as the best material for withstanding high loads and avoiding the circulation of current; the fiberglass composite rings, consisting of more than a billion miniscule glass fibres, will be glued together by a high-performance epoxy resin.

Work is underway at Airbus Defence and Space (Airbus D&S) in Madrid, Spain, on a full-size prototype—part of advanced qualification activities that precede the start of production. Development of the spare pre-compression rings is taking place at CNIM in Toulon, France, where a small-scale mockup is in production.

Read the full article on the European Domestic Agency website.


return to the latest published articles