Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryostat base insertion | "A moment that will live in our memories"

    In the closing scene of the 1977 movie Close Encounters of the Third Kind, an alien spaceship hovers above an anxious and awestruck crowd of scientists and engi [...]

    Read more

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

Of Interest

See archived entries

Magnetic system

Nine rings to counter the force

Work on the pre-compression rings of the ITER magnet system is progressing in Europe, where work on a full-scale prototype is underway. These technically challenging components—made of composite materials—are designed to push back against the electromagnetic forces of the ITER machine and reduce the fatigue on the structures of the toroidal field magnets.

At Airbus Defence and Space in Madrid, a pre-compression ring ''slice'' undergoes testing. Well-established aerospace techniques have been useful for the prototype activities on ITER's pre-compression rings, which are certainly the largest composite structures ever designed for use in a cryogenic environment. © AIRBUS D&S Spain (Click to view larger version...)
At Airbus Defence and Space in Madrid, a pre-compression ring ''slice'' undergoes testing. Well-established aerospace techniques have been useful for the prototype activities on ITER's pre-compression rings, which are certainly the largest composite structures ever designed for use in a cryogenic environment. © AIRBUS D&S Spain
The electromagnetic forces acting on the machine structure during operation will be huge—to the order of several hundred meganewtons (MN). Caused by electromagnetic interaction between the toroidal field coil current and the magnetic field generated by the poloidal field coils, these out-of-plane forces will cause stress to the toroidal field coils and, over time, fatigue.

Six pre-compression rings, installed at the top and bottom of the toroidal field coils, will be used to pull the 18 coils tightly together. Measuring five metres in diameter and weighing approximately three tonnes, the pre-compression rings will reduce the fatigue on the magnet structures caused by electro-magnetic forces—consequently prolonging their operational lifetime. Three other rings will be manufactured as spares.

A lengthy R&D program carried out in Europe identified a glass-fibre/epoxy composite as the best material for withstanding high loads and avoiding the circulation of current; the fiberglass composite rings, consisting of more than a billion miniscule glass fibres, will be glued together by a high-performance epoxy resin.

Work is underway at Airbus Defence and Space (Airbus D&S) in Madrid, Spain, on a full-size prototype—part of advanced qualification activities that precede the start of production. Development of the spare pre-compression rings is taking place at CNIM in Toulon, France, where a small-scale mockup is in production.

Read the full article on the European Domestic Agency website.


return to the latest published articles