Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Thermal shield | Practising the embrace

    In the ITER Assembly Hall, fitting tests are underway on two outboard thermal shield panels. Once paired, the 11-metre-tall, silver-plated components will [...]

    Read more

  • Image of the week | This circle is for the ring

    Another concentric circle has been drawn at the bottom of the machine assembly pit, formed by the temporary supports recently installed for poloidal field coil [...]

    Read more

  • Feeders | Multi-lane thruways into the machine

    The ITER superconducting coils thrive on a simple diet of electrical power and cooling fluids. The industrial installation on site is scaled to provide both, bu [...]

    Read more

  • Cryostat Workshop | Top lid enters the stage

    In this vast workshop over the past five years, the different sections of the ITER cryostat have been assembled and welded under India's responsibility. The bas [...]

    Read more

  • Blanket first wall | Manufacturing kicks off in Europe

    For one of the most demanding technological components of the ITER machine—the first wall of the blanket—the European Domestic Agency Fusion for Energy made the [...]

    Read more

Of Interest

See archived entries

Image of the week

A closer look at KSTAR

Over its twelve years of operation, the KSTAR tokamak (for Korea Superconducting Tokamak Advanced Research) has built an extremely valuable database for the future operation of ITER as well as for the design basis of a next-step DEMO machine.

The KSTAR tokamak and some of its auxiliary systems, seen from the entrance to the hall. (Click to view larger version...)
The KSTAR tokamak and some of its auxiliary systems, seen from the entrance to the hall.
KSTAR is considerably smaller than ITER (with a 1.8-metre major radius as compared to 6.2 metres) and it differs in many design details. The machine achieved high-performance operation mode (H-mode) in 2010 and reached an ion temperature of 100 million °C in 2018. KSTAR has proved especially efficient in suppressing edge localized modes (ELMs), a phenomenon that can occur during H-mode during which bursts of energy and particles are expelled from the plasma.

Along with the European JET, KSTAR has been at the core of an extensive international program to validate the design of an effective disruption mitigation system based on shattered pellets injection—the very system that will be installed in ITER.

A view from the back, looking toward the entrance. One of the shattered pellet injectors that were installed in 2019 is visible in the inserted image. (Click to view larger version...)
A view from the back, looking toward the entrance. One of the shattered pellet injectors that were installed in 2019 is visible in the inserted image.
Let's take a guided tour of the pristine KSTAR hall at the National Fusion Research Institute in Daejeon, Korea.

1-2: Neutral beam injectors #1 and #2
KSTAR is presently equipped with two 110 kV positive-ion-based neutral beam injectors. A third is optional.

3: Power sources
Whereas the power source for neutral beam injector #1 is located in an adjacent building, the three modules of the power source for injector #2 are installed in the KSTAR hall proper.

4: ECEI diagnostics system
The electron cyclotron emission imaging (ECEI) diagnostic is designed to visualize the electron temperature profile and fluctuations in 2D and 3D. In case a third neutral beam injector is installed, the system would be relocated.

6: Vacuum UV diagnostics system
This prototype vacuum ultraviolet diagnostics system uses spectroscopy to monitor transport and accumulation of the tungsten particles in the plasma.

7: Pellet injector
Part of the international program of R&D on ITER disruption mitigation, two shattered pellet injectors were installed in 2019 (one is visible in the inserted image, the other is in a diametrically opposed location).The equipment was provided by US ITER through Oak Ridge National Laboratory.

8: Cryovalves box
Connected to the cryoplant outside the hall, the valves are activated to control the flux of supercritical helium circulating in the magnet system.


return to the latest published articles