Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

KSTAR soon to begin third operation campaign

KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter (Click to view larger version...)
KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter
South Korea will soon conduct the third operation campaign of the Korea Superconducting Tokamak Advanced Research device (KSTAR) at the National Fusion Research Institute (NFRI).

During the first and second operation campaigns, KSTAR superconducting magnets showed reliable operation characteristics up to the designed value of 3.5 Teslas.

Major experimental goals of the third campaign are to achieve D-shaped and diverted plasma over 500 kA and to study the plasma behaviour during the application of the heating systems, amongst which will be a newly developed neutral beam injector system.

A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components. (Click to view larger version...)
A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components.
KSTAR was significantly upgraded following the second operation campaign and in preparation for the third. All the plasma-facing components are now installed inside the vacuum vessel, as are the sixteen segmented in-vessel control coils that are positioned behind the plasma-facing components.

During the upcoming campaign, the first of three ion sources in the neutral beam injection system, designed to deliver 8 MW, will be commissioned to provide 1 MW beam power.

The neutral beam injector system has been designed to deliver the deuterium beam for 300 seconds.


return to the latest published articles