Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The physics behind the transition to H-mode

    H‐mode—or thesudden improvement of plasma confinement in the magnetic field of tokamaksby approximatelya factor of two—is thehigh confinement regime that all mo [...]

    Read more

  • In search of the green plasma

    Sébastien König's core competence is in planning and scheduling; his passion is in understanding the workings of the Universe. In his previous life, before join [...]

    Read more

  • An outing into the future

    Open Doors days occur with scientific regularity at ITER (spring and autumn) and yet—due to the rapid evolution of work on site—each event offers something new. [...]

    Read more

  • Fusion "grandfather" tells family story

    Grandfathers like to tell stories. And Robert Aymar, the 'grandfather' of the French fusion community, is no exception. 'Being so old,' he quipped at last week' [...]

    Read more

  • An AC/DC adapter ... ITER size

    Like flashlight and smartphones, the ITER magnets—all 10,000 tonnes of them—will run on direct current (DC). And like flashlight and smartphones they will need [...]

    Read more

Of Interest

See archived articles

KSTAR soon to begin third operation campaign

KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter (Click to view larger version...)
KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter
South Korea will soon conduct the third operation campaign of the Korea Superconducting Tokamak Advanced Research device (KSTAR) at the National Fusion Research Institute (NFRI).

During the first and second operation campaigns, KSTAR superconducting magnets showed reliable operation characteristics up to the designed value of 3.5 Teslas.

Major experimental goals of the third campaign are to achieve D-shaped and diverted plasma over 500 kA and to study the plasma behaviour during the application of the heating systems, amongst which will be a newly developed neutral beam injector system.

A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components. (Click to view larger version...)
A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components.
KSTAR was significantly upgraded following the second operation campaign and in preparation for the third. All the plasma-facing components are now installed inside the vacuum vessel, as are the sixteen segmented in-vessel control coils that are positioned behind the plasma-facing components.

During the upcoming campaign, the first of three ion sources in the neutral beam injection system, designed to deliver 8 MW, will be commissioned to provide 1 MW beam power.

The neutral beam injector system has been designed to deliver the deuterium beam for 300 seconds.


return to the latest published articles