Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Challenges | Managing risk in a first-of-a-kind project

    The classic approach to project management is to group risks into three separate categories. The first consists of known risks, the second of unknown risks, and [...]

    Read more

  • Steve Cowley | Projecting into the coming decades

    Steven Cowley, who now heads the Princeton Plasma Physics Laboratory (PPPL), gave a seminar last week at CEA-Cadarache and he had some good news regarding the s [...]

    Read more

  • Outreach | What vacuum does to marshmallows

    Every year in France, science is "à la fête" for two consecutive weekends in October. Free events and demonstrations—tailored particularly to school-a [...]

    Read more

  • Physics | 11th ITER International School announced

    The 11th ITER International School will be held from 20 to 24 July 2020, hosted by Aix-Marseille University in Aix-en-Provence, France. The subject of this year [...]

    Read more

  • Image of the week | An anniversary in blue, white and red

    ITER neighbour and close partner in fusion research, the CEA-Cadarache nuclear research centre, was established in October 1959. This week, it celebrated the 60 [...]

    Read more

Of Interest

See archived entries

KSTAR soon to begin third operation campaign

KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter (Click to view larger version...)
KSTAR is now ready to begin its third operation campaign at Korea's National Fusion Research Institute. © Peter Ginter
South Korea will soon conduct the third operation campaign of the Korea Superconducting Tokamak Advanced Research device (KSTAR) at the National Fusion Research Institute (NFRI).

During the first and second operation campaigns, KSTAR superconducting magnets showed reliable operation characteristics up to the designed value of 3.5 Teslas.

Major experimental goals of the third campaign are to achieve D-shaped and diverted plasma over 500 kA and to study the plasma behaviour during the application of the heating systems, amongst which will be a newly developed neutral beam injector system.

A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components. (Click to view larger version...)
A birds-eye view of the inside of the KSTAR vacuum vessel after the installation of all the in-vessel components.
KSTAR was significantly upgraded following the second operation campaign and in preparation for the third. All the plasma-facing components are now installed inside the vacuum vessel, as are the sixteen segmented in-vessel control coils that are positioned behind the plasma-facing components.

During the upcoming campaign, the first of three ion sources in the neutral beam injection system, designed to deliver 8 MW, will be commissioned to provide 1 MW beam power.

The neutral beam injector system has been designed to deliver the deuterium beam for 300 seconds.


return to the latest published articles