Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fuelling fusion | The magic cocktail of deuterium and tritium

    Nuclear fusion in stars is easy: it just happens, because the immense gravity of a star easily overcomes the resistance of nuclei to come together and fuse. [...]

    Read more

  • 360° image of the week | The cryoplant

    Cryogenics play a central role in the ITER Tokamak: the machine's superconducting magnets (10,000 tonnes in total), the vacuum pumps, thermal shields and so [...]

    Read more

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

Of Interest

See archived entries

United States

A roadmap to fusion energy

Hundreds of scientists across the United States—representing a broad range of national labs, universities, and private ventures—have collaborated to produce A Community Plan for Fusion Energy and Discovery Plasma Sciences, released this month. It offers a consensus view of the bold steps to take nationally to deliver fusion energy and advance plasma science.
 
 (Click to view larger version...)
The community-driven strategic plan—the fruit of a 15-month collaborative effort—is designed to help the Fusion Energy Sciences Advisory Committee (FESAC) fulfil a US Department of Energy (DOE) charge for the development of a long-range strategy for the DOE Fusion Energy Sciences program.
 
The charge, dated 30 November 2018, requested the American Physical Society's Division of Plasma Physics (DPP) to begin by surveying the scientific community broadly; this was executed through group discussions, webinars, town halls, focus groups, and dedicated workshops initiated by the DPP's Community Planning Process (documented here). Now, in a second phase, a FESAC subcommittee will use the input from the Community Plan to develop a long-term plan to submit to the US DOE by December 2020.
 
The 200-page Community Plan for Fusion Energy and Discovery Plasma Sciences reflects the strong sentiment within the community that future research in the areas of fusion science and plasma physics should be driven by the goal of constructing fusion pilot plant on US soil. In this, and in the report's recommendation to remain a partner in ITER in order to fully reap the benefit of participation in the world's first burning plasma experiment, the recommendations in the Community Plan are broadly consistent with the National Academies Burning Plasma report published in late 2018.
 
The report establishes a set of milestones that the US fusion community has agreed should be pursued in its effort to create practical fusion energy:
  • Start immediately on the pre-conceptual design for a new US tokamak facility for operation by the end of the decade;
  • Develop a shared neutron source facility for research on fusion materials;
  • Maintain participation in the international ITER program and expand public-private collaboration in the United States to accelerate research in fusion materials and technology;
  • Leverage advanced computing technologies for better understanding and modelling;
  • Embrace innovation in developing solutions to well-known fusion challenges.
As ITER Director-General Bernard Bigot observes: "For every ITER Member, getting the highest return on investment from the ITER Project in its future operational phase requires having a corresponding well-structured domestic program. It is deeply gratifying to see the results of this community-based multi-sector effort in the US, as a substantial step toward establishing a robust US fusion program."

A Community Plan for Fusion Energy and Discovery Plasma Sciences can be downloaded here.
 
Read reports by General Atomics (home to the DIII-D tokamak), the MIT Plasma Science and Fusion Center (home to the former Alcator C-Mod tokamak and promoter of SPARC, a compact, high-field, net fusion energy experiment), and the Princeton Plasma Physics Laboratory (home to the NSTX-U tokamak).


return to the latest published articles