Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • On site | 28 who "truly shined"

    The new ITER Star Awards recognize exemplary performance and commitment. Every year, during the annual assessment campaign, ITER staff may be recognized for exe [...]

    Read more

  • MT-28 Conference | Superconducting magnets as a catalyst

    Many passers-by paused for a moment and picked up their cell phones to capture the scene. It was indeed rare to see dancers on the square outside of the Pavillo [...]

    Read more

  • Fusion world | TCV tokamak turns 30

    The Swiss TCV tokamak (for Tokamak à Configuration Variable, or 'variable configuration' tokamak) has been exploring the physics of nuclear fusion for 30 years [...]

    Read more

  • Image of the week | Port cell with a view

    A visit to ITER would not be complete without a peek into the Tokamak pit where the machine is being progressively assembled. For several years, one of the equa [...]

    Read more

  • Visit | Chinese Minister reaffirms "full support"

    ITER Director-General Pietro Barabaschi and the Chinese Minister of Science and Technology (MOST) Wang Zhigang share a common academic background. They both tra [...]

    Read more

Of Interest

See archived entries

4D planning for assembly

3D plus time

ITER construction planners and coordinators are using 4D planning methods to prepare for activities performed on critical machine components in the congested environment of the ITER Assembly Hall.

4D visualizations capture both the temporal and spatial aspects of the assembly schedule, allowing planners to organize co-activity and identify potential clashes. (Animation of the cryostat base lift by Brigantium Engineering.) (Click to view larger version...)
4D visualizations capture both the temporal and spatial aspects of the assembly schedule, allowing planners to organize co-activity and identify potential clashes. (Animation of the cryostat base lift by Brigantium Engineering.)
All large machine components will transit through the ITER Assembly Hall—entering through double doors on the south end, pausing at a laydown area for preparation or pre-assembly, and ultimately traversing the length of the building on the cables of the overhead bridge cranes for installation inside the Tokamak pit.

"In the months and years ahead, some of the largest machine components will be going through the Assembly Hall," says Brian Macklin, who leads the Construction Department's Ex-Vessel Assembly Group. "Planning for the routing of a component through the Assembly Building is not just a matter of bringing it from point A to point B—we must also take into account other components arriving at the same time, the availability of the overhead cranes, space constraints in the Assembly Hall, and other activities inside the building."

Avoiding bottlenecks requires the integration of detailed schedule information for each work package—what is arriving when, and what preparation or pre-assembly activities must be carried out in the Assembly Hall—with 3D models of the relevant components, tooling and assembly spaces.

Click to view the video...
"4D scheduling is the result of merging 3D data with scheduling data," says Lynton Sutton, who is the contractor doing the 4D planning for Macklin's group through his company Brigantium Engineering. "Using 4D planning, we are able to optimize and validate the coordination planning of different work packages and the use of space; we have also used 4D to model different scenarios to aide in decision-making. 4D has been a vital tool for construction sequence visualization—enabling us to identify critical risks and clashes that may have been difficult to spot using traditional planning method alone. In addition, we are able to create video animations using 4D, which are valuable tools for communication."

Having accurate, up-to-date, configuration-controlled input is critical. Sutton has developed an internal process for accessing validated CAD models from the ITER Organization Design Office and associated schedule data from the workface planners of the MOMENTUM consortium—the Construction Management-as-Agent responsible for the day-to-day planning of ITER assembly.  

The group used 4D to model the recent cryostat base installation operation (click on the animation above), and is currently working on scenarios for the next large components to enter the Assembly Hall—the cryostat lower cylinder, the lower cryostat thermal shield, and vacuum vessel Sector #6.

"4D planning allows us to display complex sequences in a visual form that is immediately understandable by all," says Macklin. "It's hard to overstate how powerful this tool can be for avoiding clashes and rework, and for bringing all teams to the same understanding of a space allocation or sequencing problem, leading to faster resolution."


return to the latest published articles