Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Top management | Tim Luce, Head of Science & Operation

    What does a seven-year-old growing up in a small community in Arkansas know about what it means to be an 'atomic scientist'? Probably not much. Except, remember [...]

    Read more

  • Blanket shield blocks | Series production milestone in Korea

    It takes many months for a single forged block of stainless steel to be transformed into the complex shape of an ITER blanket shield block, full of gullies, cha [...]

    Read more

  • Image of the week | 5 top lid segments expected

    A little less than five years ago, in December 2015, the first segments of the ITER cryostat (out of a total of 54) were delivered to the construction site from [...]

    Read more

  • On site | As ITER begins assembly, HVAC becomes mission critical

    Not only will heating, ventilation and air conditioning (HVAC) help protect people and equipment during the assembly phase at ITER, but they will also help ensu [...]

    Read more

  • Vacuum vessel | Sector #6 is leak tight

    The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours. Back in March 2020, as experts from the Korean Domestic Agency [...]

    Read more

Of Interest

See archived entries

4D planning for assembly

3D plus time

K.D.

ITER construction planners and coordinators are using 4D planning methods to prepare for activities performed on critical machine components in the congested environment of the ITER Assembly Hall.

4D visualizations capture both the temporal and spatial aspects of the assembly schedule, allowing planners to organize co-activity and identify potential clashes. (Animation of the cryostat base lift by Brigantium Engineering.) (Click to view larger version...)
4D visualizations capture both the temporal and spatial aspects of the assembly schedule, allowing planners to organize co-activity and identify potential clashes. (Animation of the cryostat base lift by Brigantium Engineering.)
All large machine components will transit through the ITER Assembly Hall—entering through double doors on the south end, pausing at a laydown area for preparation or pre-assembly, and ultimately traversing the length of the building on the cables of the overhead bridge cranes for installation inside the Tokamak pit.

"In the months and years ahead, some of the largest machine components will be going through the Assembly Hall," says Brian Macklin, who leads the Construction Department's Ex-Vessel Assembly Group. "Planning for the routing of a component through the Assembly Building is not just a matter of bringing it from point A to point B—we must also take into account other components arriving at the same time, the availability of the overhead cranes, space constraints in the Assembly Hall, and other activities inside the building."

Avoiding bottlenecks requires the integration of detailed schedule information for each work package—what is arriving when, and what preparation or pre-assembly activities must be carried out in the Assembly Hall—with 3D models of the relevant components, tooling and assembly spaces.

Click to view the video...
"4D scheduling is the result of merging 3D data with scheduling data," says Lynton Sutton, who is the contractor doing the 4D planning for Macklin's group through his company Brigantium Engineering. "Using 4D planning, we are able to optimize and validate the coordination planning of different work packages and the use of space; we have also used 4D to model different scenarios to aide in decision-making. 4D has been a vital tool for construction sequence visualization—enabling us to identify critical risks and clashes that may have been difficult to spot using traditional planning method alone. In addition, we are able to create video animations using 4D, which are valuable tools for communication."

Having accurate, up-to-date, configuration-controlled input is critical. Sutton has developed an internal process for accessing validated CAD models from the ITER Organization Design Office and associated schedule data from the workface planners of the MOMENTUM consortium—the Construction Management-as-Agent responsible for the day-to-day planning of ITER assembly.  

The group used 4D to model the recent cryostat base installation operation (click on the animation above), and is currently working on scenarios for the next large components to enter the Assembly Hall—the cryostat lower cylinder, the lower cryostat thermal shield, and vacuum vessel Sector #6.

"4D planning allows us to display complex sequences in a visual form that is immediately understandable by all," says Macklin. "It's hard to overstate how powerful this tool can be for avoiding clashes and rework, and for bringing all teams to the same understanding of a space allocation or sequencing problem, leading to faster resolution."


return to the latest published articles