Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Deputy Director-General | Yutaka Kamada, Science & Technology

    In his late childhood and early teens, Yutaka Kamada developed two passions: one for growing cactus, the other for fusion energy. Half a century later, his [...]

    Read more

  • Images of the week | Yet another magnet feeder from China

    This in-cryostat feeder will supply electrical power and cryogenic fluids to some of the top correction coils of the ITER machine. ITER will rely on 31 mag [...]

    Read more

  • Gyrotrons | India successfully demonstrates ITER power and pulse requirements

    As a part of its in-kind commitments to the project, ITER India will deliver two radio-frequency-based power sources (or 'gyrotrons") with state-of-the-art [...]

    Read more

  • Neutral beam power supply | Lightning-power voltage

    In January 2021, preparatory works began for the construction of two large buildings designed to accommodate a unique set of electrical equipment. A little more [...]

    Read more

  • MITICA | Cryopump passes site acceptance tests

    Cryopumps, which play an essential role in ITER, are not what one has in mind when picturing a pump. A conventional pump creates negative pressure to suck in fl [...]

    Read more

Of Interest

See archived entries

Assembly tooling

How to (carefully) transfer ITER's heaviest components

Functional tests on the "sector lifting tool" have demonstrated that the tool's controller and actuators are ready to implement operator commands during the delicate lifting operations of vacuum vessel sectors, toroidal field coils, and the finalized sector sub-assemblies.

Recent functional tests on this sector lifting tool have demonstrated that its controllers and electrically driven actuators are ready for orders. This tool is one of the interfacing components between the heavy lift cranes and some of the heaviest ITER components. (Click to view larger version...)
Recent functional tests on this sector lifting tool have demonstrated that its controllers and electrically driven actuators are ready for orders. This tool is one of the interfacing components between the heavy lift cranes and some of the heaviest ITER components.
The sector lifting tool is a purpose-built assembly tool designed and manufactured by the Korean Domestic Agency to lift and transfer some of ITER's heaviest components—vacuum vessel sectors and D-shaped toroidal field coils—as well as the nine sector sub-assemblies that will be created on ITER's tallest assembly tools.

The overhead travelling cranes cannot "grasp" these major loads directly; instead, several layers of attachments intervene between the cranes and the components to be lifted.

First, a 90-tonne beam attached to the four hooks of the double crane provides a single connection for the next-layer of lifting attachment. This "dual crane heavy lifting beam," which allows the cranes to work in tandem and lift loads of up to 1,500 tonnes, has been procured (along with the cranes) by the European Domestic Agency. (It does not appear in the image below.)

The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before each lift. Through a pin attachment at the top, the sector lifting tool connects to the dual crane heavy lifting beam. (Click to view larger version...)
The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before each lift. Through a pin attachment at the top, the sector lifting tool connects to the dual crane heavy lifting beam.
For the components that must be mounted on the sector sub-assembly tool, the next in order is the sector lifting tool, which attaches to the dual crane heavy lifting beam through a pin connection.

The tool will interface at three points in two places with toroidal field coil lifting beam to lift the coils from the upending tool to the sector assembly tools. For the nine vacuum vessel sectors, the sector lift tool's direct interface will be the nine radial beams, which are part of the in-pit assembly tools. These radial beams are transported from the pit to connect to each sector in its upended (vertical) orientation, and they remain attached to the sector through transport (under the sector lifting tool) to the sub-assembly tool, throughout the sub-assembly operation, and through delivery and installation in the Tokamak pit.

Considering the importance of the centre of gravity when lifting such heavy loads, the sector lifting tool has been designed with a balancing control system that can be activated through controllers and electrically driven actuators. The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before the lift. This system, which was first confirmed during testing at ITER Korea, has been verified through functional site tests this month at ITER.

Early next year, the fully tested sector lifting tool will enter into activity—playing an important role in transferring the first toroidal field coils and the first vacuum vessel sector to the standing tools in the Assembly Hall.



return to the latest published articles