Assembly tooling | How to (carefully) transfer ITER's heaviest components

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryodistribution | Blowing cold and hot

    If the cryodistribution system were a railroad, the cryogenic termination cold box would be its main switch. A massive structure packed with pipes, valves, elec [...]

    Read more

  • Pre-assembly activities | Captured from on high

    With assembly tools standing 22 metres tall, massive bridge cranes straddling the width of the building, and alien-shaped components placed at regular intervals [...]

    Read more

  • 27th ITER Council | Assembly moves ahead

    The Twenty-Seventh Meeting of the ITER Council took place by videoconference on 18 and 19 November 2020, chaired by LUO Delong from China. Representat [...]

    Read more

  • Fusion world | Translating JET into ITER

    With an inner wall made of beryllium and tungsten, the European tokamak JET is the only tokamak in the world to share the same material environment as ITER. Whe [...]

    Read more

  • Worksite | Major progress you don't see from the air

    There was a time when aerial pictures of the ITER worksite taken at six-month intervals showed spectacular change. Buildings and structures sprouted from previo [...]

    Read more

Of Interest

See archived entries

Assembly tooling

How to (carefully) transfer ITER's heaviest components

Functional tests on the "sector lifting tool" have demonstrated that the tool's controller and actuators are ready to implement operator commands during the delicate lifting operations of vacuum vessel sectors, toroidal field coils, and the finalized sector sub-assemblies.

Recent functional tests on this sector lifting tool have demonstrated that its controllers and electrically driven actuators are ready for orders. This tool is one of the interfacing components between the heavy lift cranes and some of the heaviest ITER components. (Click to view larger version...)
Recent functional tests on this sector lifting tool have demonstrated that its controllers and electrically driven actuators are ready for orders. This tool is one of the interfacing components between the heavy lift cranes and some of the heaviest ITER components.
The sector lifting tool is a purpose-built assembly tool designed and manufactured by the Korean Domestic Agency to lift and transfer some of ITER's heaviest components—vacuum vessel sectors and D-shaped toroidal field coils—as well as the nine sector sub-assemblies that will be created on ITER's tallest assembly tools.

The overhead travelling cranes cannot "grasp" these major loads directly; instead, several layers of attachments intervene between the cranes and the components to be lifted.

First, a 90-tonne beam attached to the four hooks of the double crane provides a single connection for the next-layer of lifting attachment. This "dual crane heavy lifting beam," which allows the cranes to work in tandem and lift loads of up to 1,500 tonnes, has been procured (along with the cranes) by the European Domestic Agency. (It does not appear in the image below.)

The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before each lift. Through a pin attachment at the top, the sector lifting tool connects to the dual crane heavy lifting beam. (Click to view larger version...)
The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before each lift. Through a pin attachment at the top, the sector lifting tool connects to the dual crane heavy lifting beam.
For the components that must be mounted on the sector sub-assembly tool, the next in order is the sector lifting tool, which attaches to the dual crane heavy lifting beam through a pin connection.

The tool will interface at three points in two places with toroidal field coil lifting beam to lift the coils from the upending tool to the sector assembly tools. For the nine vacuum vessel sectors, the sector lift tool's direct interface will be the nine radial beams, which are part of the in-pit assembly tools. These radial beams are transported from the pit to connect to each sector in its upended (vertical) orientation, and they remain attached to the sector through transport (under the sector lifting tool) to the sub-assembly tool, throughout the sub-assembly operation, and through delivery and installation in the Tokamak pit.

Considering the importance of the centre of gravity when lifting such heavy loads, the sector lifting tool has been designed with a balancing control system that can be activated through controllers and electrically driven actuators. The tool is equipped to perform horizontal-plane adjustments along the X and Y axis (longitudinal and transverse) in order to balance the loads before the lift. This system, which was first confirmed during testing at ITER Korea, has been verified through functional site tests this month at ITER.

Early next year, the fully tested sector lifting tool will enter into activity—playing an important role in transferring the first toroidal field coils and the first vacuum vessel sector to the standing tools in the Assembly Hall.



return to the latest published articles