Subscribe options

Select your newsletters:

Please enter your email address:


Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Central solenoid

First module gets clean bill of health

After enduring a battery of rigorous tests, the first of seven superconducting magnet modules that will make up the beating heart of the ITER international fusion reactor has earned a clean bill of health.

Multiple central solenoid modules are in fabrication at the General Atomics Magnet Technologies Center near San Diego, California. Credit: GA (Click to view larger version...)
Multiple central solenoid modules are in fabrication at the General Atomics Magnet Technologies Center near San Diego, California. Credit: GA
As expected for such a first-of-its-kind device, engineers encountered and overcame challenges over two years of deliberate probing, said Kathy McCarthy, associate laboratory director for Oak Ridge National Laboratory's (ORNL's) Fusion and Fission Energy and Science Directorate and director of the US ITER Project. "This module went through rigorous testing and emerged much better for it," McCarthy said. "The tougher the vetting, the higher the confidence in the central solenoid's performance. And we are now confident."

The module, built at San Diego-based General Atomics under the direction of the US ITER project headquartered at ORNL, will head to France later this year, where ITER assembly is already underway. In due course, it will be followed by six companion modules (one to serve as a spare) now in production that will together form ITER's central solenoid, one of the most complex and challenging magnet systems ever built.

The successful testing of the first module is a crucial milestone for the ambitious ITER Project. Although the central solenoid has also been likened to a backbone with its coils stacked like vertebrae, the heart may be the more apt metaphor. The 45,000 amps of electricity that will course like blood through its niobium-tin wires will generate a strong magnetic field that plays the critical role of steering and shaping an intensely hot, energy-producing plasma circling around it.

"There is no ITER without the central solenoid," said David Everitt, US ITER's central solenoid systems manager. The central solenoid is one of 12 hardware systems that US ITER, funded by the Department of Energy Office of Science Fusion Energy Sciences, is providing to the project.

As the first of the solenoid modules, the 4.3-metre-wide, 113-tonne module was subjected to a series of demanding tests throughout and after its production at General Atomics and components were evaluated at SULTAN, a facility in Switzerland that tests high-current superconductors.

The module was subjected to the same extreme conditions it will face at ITER, including vacuum, high current and frigid temperatures (4 K, or minus 270 degrees Celsius) required for niobium-tin to be a superconductor.

One of the thorniest problems the team had to solve was created by the coaxial joints that connect the module to its power source to generate a magnetic field. Because of the extreme cold required for superconducting, any heat-creating resistance that might occur across the numerous joints in the system had to be kept to an absolute minimum—within just a few billionths of an ohm—so as not to overheat the precious liquid helium that keeps the magnet cold.

While some joints exceeded these demanding requirements, the coaxial joints fell short, and it took the better part of two years to troubleshoot the issue. Repeatedly disassembling and reassembling the joints, the team cycled through a series of approaches, eventually arriving at a redesign that kept resistance within the project's strict parameters.

After rounds of challenging testing, the first central solenoid module is ready for shipment to the ITER site. Credit: GA (Click to view larger version...)
After rounds of challenging testing, the first central solenoid module is ready for shipment to the ITER site. Credit: GA
A design modification also resulted from another skull-scratcher engineers encountered with the coil's quench detection system. If the current anywhere along the 5.6 km of superconductor in the module encounters too much resistance, the resulting heat can raise the magnet above the frigid temperatures required for it to operate—prompting an event called a quench. Tests revealed that, due to an incompatibility between the coating on quench detection wires and the epoxy used to insulate the superconducting cables, the wires could crack. After months of troubleshooting, the team engineered a solution that cleared a high but critical hurdle, called a Paschen test, that assessed the system's performance under the more demanding conditions of a vacuum.  

"If you can pass these severe Paschen tests," said Everitt, "you can have very high confidence in your insulation system."

The vetting process required time and patience. But engineers deftly adapted, said Graham Rossano, US ITER's technical division director.

"The team has done a good job of maintaining production and testing throughout the pandemic. And we're confident of the performance because we did full-power testing at temperature."

Numerous other partners contributed to the success as well—from ITER Japan which provided the superconductor, to staff at the ITER Organization, vendors and external advisors.

"It's amazing thinking how many heartbeats have gone into this thing," Everitt said.

Lessons learned on this first module have been applied to the fabrication of subsequent coils. The second module is now undergoing its own battery of tests and is expected to ship to ITER just after the first in mid-2021.

As knowledge is shared throughout the broader scientific community, this pioneering work will also benefit efforts outside of ITER and help advance future magnets for fusion and other applications.

See the original story on the US ITER website

return to the latest published articles