Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

  • Assembly | Set of handling tools for in-vessel installation finalized

    Inside of a test facility that reproduces the volume and geometry of the ITER vacuum vessel environment, a team from CNIM Systèmes Industriels has dem [...]

    Read more

  • 360° image of the week | The assembly theatre

    Ever since it was invented almost two centuries ago, photography has tried to capture what the human eye actually sees. Despite huge progress achieved, it has n [...]

    Read more

Of Interest

See archived entries

Assembly tools

Strong base for a very heavy task

The first part of the in-pit assembly tool has been installed in the Tokamak pit. When complete, the tool will stand more than 20 metres high and branch out in nine directions to support the sectors of the vacuum chamber as they are welded together.

 (Click to view larger version...)
The same week that vacuum vessel sector #6 was "upended" to vertical in the ITER Assembly Hall, the bottom cylinder of the principal in-pit assembly tool was lowered and anchored onto the basemat of the Tokamak pit.

The two operations are related. The vertical sector will now be transported a few metres and installed on one of the V-shaped assembly tools, where it will be "sub-assembled" with two vertical coils and panels of thermal shielding. The resulting "vacuum vessel sub-assembly," weighing 1,200 tonnes, will then be moved into the pit, where the in-pit column tool will be waiting, ready to support, align, and stabilize the vacuum vessel sub-assemblies as they are joined and welded.

 (Click to view larger version...)
The bottom cylinder is the foundation for the in-pit tool, one of five sections that will form its trunk. Like the other parts of the central column, the 70-tonne component is hollow and "reinforced," designed to support all nine sectors of the ITER vacuum vessel during the assembly phase ... including in the case of a seismic event. Large shear keys, bolted and pinned to the concrete basemat at the centre of the assembly pit under the tool, provide resistance against lateral loads and sliding forces. Inside of the column, "cat ladders" provide access to various levels of the central column, with traps to exit to staging inside of the vacuum vessel.

Each vacuum vessel sector will be supported by a radial beam that shares its load between the central column on one side and the concrete bioshield on the other through brackets embedded in the bioshield wall.

 (Click to view larger version...)
On Saturday 27 March, the assembly contractors lifted the 5.6-metre-tall component and transported it into the pit. The last few metres were the most delicate, as the bottom cylinder was carefully inserted into the round opening at the bottom of the cryostat base, avoiding the edges. Metrology confirmed that the structure was positioned within 2 millimetres of its nominal position inside of the Tokamak Global Coordinate System (TGCS).



return to the latest published articles