Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Remembering Bernard Bigot, ITER Director-General 2015-2022

    On the ITER site, the machinery of construction was humming just like on any weekday. Workers were concentrating on their tasks, laying rebar for new buildings [...]

    Read more

  • Tokamak assembly | Preparing for the Big Lift

    The distance was short but the challenge daunting: on Thursday last week, the first section of the plasma chamber was lifted 50 centimetres above its suppor [...]

    Read more

  • Image of the week | 13th toroidal field coil arrives from Europe

    The toroidal field coil procurement effort has been one of the longest of the ITER program, initiated by Procurement Arrangements signed in 2007 and 2008. Manuf [...]

    Read more

  • Diagnostics | Final Procurement Arrangement signed

    ITER Diagnostics reached an important milestone in December 2021 when it concluded the last Procurement Arrangement of the diagnostics program. After signing a [...]

    Read more

  • On site | A quick visit to the Control Building

    Work is progressing on the ITER Control Building, ergonomically designed for the 60 to 80 operators, engineers and researchers who will call it home.  [...]

    Read more

Of Interest

See archived entries

Correction coils

First of 18 lowered

In all tokamak devices, ITER included, small deviations in the shape or position of the magnets cause unwanted field perturbations that can affect plasma stability and confinement. Correcting these "magnetic field errors" in ITER is the job of the correction coils—18 small superconducting coils inserted between the major toroidal and poloidal field systems. The first correction coil was lowered into place on 21 October.

A 4-tonne bottom correction coil is inserted into the Tokamak pit on 21 October 2021. Five others will complete the set at the bottom of the machine. (Click to view larger version...)
A 4-tonne bottom correction coil is inserted into the Tokamak pit on 21 October 2021. Five others will complete the set at the bottom of the machine.
Despite extreme precision in the manufacturing and assembly of the ITER magnet system, the smallest deviation from nominal in the magnets themselves—or in the system's joints, current leads or electrical busbars—perturbs the magnetic trap that confines and shapes the plasma.

Eighteen correction coils—six top, six side and six bottom—will act in pairs to correct, or reduce, the most troublesome field errors. Based on a build-to-print design developed by the ITER Organization, the Chinese Domestic Agency and its contractor ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) are procuring the coils. The first two bottom correction coils arrived on site at ITER in December 2020; since then, four other bottom coils have been delivered.

On site, each coil undergoes site acceptance tests including electrical tests, dimensional surveys, leak tests and weld inspections. For bottom coils BCC/4 and BCC/5, these tests were completed this month.

Planarity is maintained for the duration of the lift (within the maximum planarity error tolerance of 3 mm). The large structure on the side of the coil is a ''termination box,'' which hosts piping and insulating breaks. (Click to view larger version...)
Planarity is maintained for the duration of the lift (within the maximum planarity error tolerance of 3 mm). The large structure on the side of the coil is a ''termination box,'' which hosts piping and insulating breaks.
In parallel to the acceptance tests, the team has to prepare the very tight environment of the Tokamak pit for the installation of the each coil.

"We know the as-built position of the first two poloidal field coils in the pit; we needed to work back from that to ready the temporary supports and plan the lift," says Josep Pallisa, assembly engineer in the Magnet Section. "In the crowded environment of the lower Tokamak pit, the bottom correction coils and their supports have only a small sliver of space between poloidal field coil #6, poloidal field coil #5, lower magnet feeders, and staging platforms."

The lift of BCC/4 on Thursday 21 October went according to plan. The second correction coil, BCC/5, will be positioned in the pit on 26 October, followed in the coming months by two other bottom correction coil pairs. In the final machine geometry, the correction coils will be attached to the toroidal field coil superstructure.  



return to the latest published articles