Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • 30th ITER Council: Progress in a time of challenge and transition

    The Council chamber on the fifth floor of the ITER Headquarters building resonated once again with the sound of voices as Member representatives gathered for th [...]

    Read more

  • Open Doors Day | Back together again

    After more than two years, ITER has resumed a tradition that dates back to 2007—Open Doors Day. On Saturday 18 June, more than 50 "volunteers," staff [...]

    Read more

  • ITER Robots | Cultivating curiosity and creativity

    Robotics are everywhere. As technology develops, robots are playing an increasing role in industry, medicine, agriculture and many other fields. In ITER, the op [...]

    Read more

  • Worksite | Changing views

    Twelve years after construction work began on the ITER platform, the installation has acquired its near-final appearance. More than 85 percent of civil works ar [...]

    Read more

  • Image of the week | A steep climb

    In the days and weeks to come, the sector module that was installed in the Tokamak assembly pit on 11-12 May will be moved closer to its final position. Hydraul [...]

    Read more

Of Interest

See archived entries

Manufacturing

Russia ships auxiliary heating equipment

The energy-generating devices of ITER's electron cyclotron heating system—gyrotrons—require a number of auxiliary systems such as water cooling equipment, cryocoolers and microwave-beam forming systems. A first batch of auxiliaries is on its way now from Nizhny Novgorod, Russia.

In a gyrotron, beams of electrons are accelerated toward a cavity where a strong magnetic field is applied. The interaction between the rotating (cyclotron) motion of the electrons and the magnetic field generate high-frequency radio waves that ''travel'' in a straight line into the plasma, almost like an optical beam. Around the central gyrotron unit are auxiliary systems such as water cooling equipment, cryocoolers and microwave-beam forming systems. (Click to view larger version...)
In a gyrotron, beams of electrons are accelerated toward a cavity where a strong magnetic field is applied. The interaction between the rotating (cyclotron) motion of the electrons and the magnetic field generate high-frequency radio waves that ''travel'' in a straight line into the plasma, almost like an optical beam. Around the central gyrotron unit are auxiliary systems such as water cooling equipment, cryocoolers and microwave-beam forming systems.
At ITER, two radio-wave-generating systems are designed to deliver 40 MW of input heating power to the plasma: the electron and ion cyclotron heating systems. The systems deliver energy at frequencies that match the oscillations of particles inside the plasma—a matching called "resonance." The energy increases the velocity of the particles' chaotic motion, and at the same time their temperature.

At the core of electron cyclotron resonance heating (ECRH) is the microwave-generating gyrotron. In a gyrotron, beams of electrons are accelerated toward a cavity where a strong magnetic field is applied. The interaction between the rotating (cyclotron) motion of the electrons and the magnetic field generate high-frequency radio waves that "travel" in a straight line into the plasma, almost like an optical beam.

Russia is manufacturing 8 of the 24 gyrotrons required by ITER. Six gyrotron complexes have already been completed, of which four are required to be on site by First Plasma. The Institute of Applied Physics of the Russian Academy of Sciences has been engaged in the development and scientific guidance for the creation of these unique devices, while their fabrication is carried out at the GYKOM enterprise in Nizhny Novgorod. 

A first batch of auxiliary equipment was dispatched on 1 December. According to the ITER schedule, delivery of gyrotrons, power supplies, control systems, as well as the start of equipment assembly at the ITER site is planned for 2022.



return to the latest published articles