Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Disruption mitigation | Final design review is a major step forward

    The generations of physicists, engineers, technicians and other specialists who have worked in nuclear fusion share a common goal, dedication and responsibility [...]

    Read more

  • Image of the week | Like grasping a bowl of cereal

    Contrary to the vast majority of ITER machine components, the modules that form the central solenoid cannot be lifted by way of hooks and attachments. The 110-t [...]

    Read more

  • Education | 13th ITER International School announced

    The 13th ITER International School (IIS) will be held from 9 to 13 December in Nagoya hosted by National Institute for Fusion Science (NIFS), Japan. The subject [...]

    Read more

  • Open Doors Day | Having fun while discovering ITER

    A public event on Saturday 13 April draws a big crowd. It was a beautiful, summer-like day on Saturday 13 April. Perfect for a journey into ITER. Nearly 800 mem [...]

    Read more

  • Fusion world | Increased awareness in a changing landscape

    The world of fusion research is changing fast, and world leaders are taking notice. The large public projects that occupied centre stage for the past decades ar [...]

    Read more

Of Interest

See archived entries

Utilities

Directly from producer to consumer

When fully operational, ITER will be like a large living being with fluids rushing through kilometres of veins and arteries to organs located throughout the installation. By way of pumps, valves and compressors, powerful flows of air, water, helium and nitrogen will be pushed through a ramified network of underground pipes and delivered to a large variety of "clients." In early February, the first connection between producer and consumer was successfully established, delivering compressed air to the cryoplant's hundreds of pneumatic activators.

Densely packed with a large variety of equipment (pictured: the demineralized water unit), the Site Services Building will produce and distribute utilities throughout the installation. From left to right: Alexandre Marc, test and commisioning controller (Engage); Isabelle Gentili, principal shift operator (ITER Organization); Frédéric Debert, test and commisioning supervisor (Engage). (Click to view larger version...)
Densely packed with a large variety of equipment (pictured: the demineralized water unit), the Site Services Building will produce and distribute utilities throughout the installation. From left to right: Alexandre Marc, test and commisioning controller (Engage); Isabelle Gentili, principal shift operator (ITER Organization); Frédéric Debert, test and commisioning supervisor (Engage).
The main utilities production facility at ITER is the 80-metre-long Site Services Building, located near the Tokamak Complex. Despite its unassuming name, the building will play a strategic role in the daily pulsing and throbbing of the ITER installation. Densely packed with a large variety of equipment—a demineralized water plant, chiller systems, air compressors, dozens of pumps and kilometres of piping—the facility will produce and distribute compressed and breathable air (for operators in ventilated nuclear suits), demineralized water for cooling circuits and detritiation systems, and cold water for air conditioning systems.

The compressed and breathable air facility can deliver 5,000 cubic metres per hour at a pressure of 10 bar. (Click to view larger version...)
The compressed and breathable air facility can deliver 5,000 cubic metres per hour at a pressure of 10 bar.
Whether liquid of gaseous, the volumes produced will be considerable: the compressed air units for instance can deliver 5,000 cubic metres per hour at a pressure of 10 bar; the production capacity for demineralized water is approximately 34 cubic metres per hour.

The facility hosts systems that produce, chemically treat and send compressed air and gases flowing to clients through the piping network. Hot water is produced in another unit hosting the largest electrical boiler in Europe. Gaseous helium for small consumers such as valves and local testing and inspection systems comes from bottle racks. Gaseous nitrogen extracted from the atmosphere by systems located in the cryoplant will be dedicated to the inerting of glove-boxes and other enclosures, valve actuation, ventilation for tritiated water holding tanks, and ventilation for cooling water system users like drying systems and nitrogen-based pressurizers and valves.

Utilities are distributed through an underground network of approximately 20 kilometres of piping. (Click to view larger version...)
Utilities are distributed through an underground network of approximately 20 kilometres of piping.
Connecting the compressed air distribution network to the cryoplant was an essential step in the testing of the facility's 1,500 pneumatic actuators and hundreds of control valves. An integrated team composed of ITER operators and European staff from Fusion for Energy and Engage have been working closely together to achieve this milestone. The demineralized water system will be next, and progressively, one by one, all the clients throughout the installation on the platform will be served.



return to the latest published articles