Because repair tasks will result in deformations of the highly flexible thermal shield segments, metrologists are needed to predict the nature and size of the deformations before each investigatory step and then measure the change after the work. Here, a metrologist performs a shell scan using ATS600.
Because the segments are so large, measuring around 15 metres by 10 metres in area, one of the challenges was that, due to obstructed lines of sight, not everything could be measured from the same instrument position, obliging the metrology team to take laser observations from multiple instrument locations. With the help of advanced metrology tools that use Monte Carlo equations to resolve measurement uncertainties, several observations were taken of each point in a network and then optimized.
The size of the segments, measuring around 15 metres by 10 metres in area, is one of the challenges for metrologists, obliging them to take laser observations from multiple instrument locations.
Temperature fluctuations also affect the size of components—the warmer the ambient environment, the more the parts expand. Given the large size of the thermal shield components, even a small change in temperature can result in significant thermal distortion. That is why metrology was performed on the thermal shield segments and panels in a temperature-controlled building—the poloidal field coil facility on site.