Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Metrology

Predicting deformation ahead of repair

Metrologists are required to assess the structural changes resulting from repairs—but in order to do so, they have to quantify several sources of variation.

A vacuum vessel thermal shield outboard segment is surveyed before repairs. Capturing flange features (hole cylinders) using T-Probe and AT960 helps to define the as-built reference model. (Click to view larger version...)
A vacuum vessel thermal shield outboard segment is surveyed before repairs. Capturing flange features (hole cylinders) using T-Probe and AT960 helps to define the as-built reference model.
In late 2022, the ITER metrology group was asked to support the thermal shield team by providing deformation data during specific repair steps such as clamping parts or removing, welding and buffing pipes. Because each of these tasks results in deformations of the highly flexible components, metrologists were called in to predict the nature and size of the deformations before each investigatory step and then measure the change after the work was done.

"We supported several test trials, including vacuum vessel thermal shield trials at both the segment and panel level, as well as testing on part of the cryostat thermal shield—namely the support thermal shield," says Lionel Poncet, assembly metrology engineer.

Thermal shield segments are made of assembled panels. At the segment level, tests included different sequences of pipe removal and buffing to assess deformation that would be induced by certain operations. Panel-level tests took place on the four to six panels that make up a segment, removing them from the segment to analyze separately.

Because repair tasks will result in deformations of the highly flexible thermal shield segments, metrologists are needed to predict the nature and size of the deformations before each investigatory step and then measure the change after the work. Here, a metrologist performs a shell scan using ATS600. (Click to view larger version...)
Because repair tasks will result in deformations of the highly flexible thermal shield segments, metrologists are needed to predict the nature and size of the deformations before each investigatory step and then measure the change after the work. Here, a metrologist performs a shell scan using ATS600.
Because the segments are so large, measuring around 15 metres by 10 metres in area, one of the challenges was that, due to obstructed lines of sight, not everything could be measured from the same instrument position, obliging the metrology team to take laser observations from multiple instrument locations. With the help of advanced metrology tools that use Monte Carlo equations to resolve measurement uncertainties, several observations were taken of each point in a network and then optimized.

Different sources of variation had to be quantified to determine the effects of repairs. One source is the pressure caused by supporting structures, which can change the shape of the relatively thin thermal shield panels. "Deformations can come either from the support or from the pipe removal," explains Poncet, "but what we really want to know is what comes from the pipe removal—so we need to separate the two. That's why the supporting conditions have to be monitored and controlled throughout the activity. We take reference measurements both with and without the support structures to evaluate the difference."

Variation also results when changes in temperature affect laser distance measurements. A subsystem in the laser instrument compensates for this effect with software that makes immediate adjustments based on live temperature readings together with pressure and humidity values.

The size of the segments, measuring around 15 metres by 10 metres in area, is one of the challenges for metrologists, obliging them to take laser observations from multiple instrument locations. (Click to view larger version...)
The size of the segments, measuring around 15 metres by 10 metres in area, is one of the challenges for metrologists, obliging them to take laser observations from multiple instrument locations.
Temperature fluctuations also affect the size of components—the warmer the ambient environment, the more the parts expand. Given the large size of the thermal shield components, even a small change in temperature can result in significant thermal distortion. That is why metrology was performed on the thermal shield segments and panels in a temperature-controlled building—the poloidal field coil facility on site.

"The ITER metrology team is accustomed to supporting the ITER units in all of their metrology needs," says Poncet. "So, when we received this request for the thermal shield in 2022, we geared up to do it by determining the as-built shape of the different components to be measured in order to set up references that could be monitored throughout the investigatory process. The trials performed through mid-2023 helped to contribute to the repair strategy that was defined that year, and which got underway after the selection of repair contractors."



return to the latest published articles