Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite postcards | Under fog and autumn light

    Due to its proximity to the Durance River and to the narrow gully spanned by the Bridge of Mirabeau, the area around ITER often experiences a peculiar meteorolo [...]

    Read more

  • Assembly Hall | Another massive paint job

    By the end of December, the massive painting job in the Assembly Hall will be complete and the building's floor will be as white and pristine as the landscape i [...]

    Read more

  • ITER India | Testing a neutral beam for diagnostics

    Every 23 seconds during fusion operation, a probe beam will penetrate deep into the core of the ITER plasma to aid in the detection of helium ash—one of fusion' [...]

    Read more

  • Welded attachments | Follow the laser projections

    How do you position 150,000 welded attachments on to a vacuum vessel the size of a house, each one needing to be accurately placed to less than a 4 mm target? [...]

    Read more

  • Visit | Our neighbour the Nobel

    In 2018, the Nobel Prize in Physics was awarded to Gérard Mourou for his work on ultra-short, extremely high-intensity laser pulses—the so-called 'chirped pulse [...]

    Read more

Of Interest

See archived entries

Measuring fusion power

Sabina Griffith

The microfission chamber unit is mounted on the vacuum vessel behind a blanket module. The base plate will be welded to the vacuum vessel, cooled by water coolant, and the plate will be cooled by heat conduction. (Click to view larger version...)
The microfission chamber unit is mounted on the vacuum vessel behind a blanket module. The base plate will be welded to the vacuum vessel, cooled by water coolant, and the plate will be cooled by heat conduction.
The measurement of the neutron emission stemming from the fusion reaction is a very important diagnostic because it is directly related to measuring the fusion power. A typical neutron counter is the fission chamber. This detector, originally developed as a monitor for fission reactors, has been applied for decades on various large fusion devices like JET in Europe, JT60 in Japan and TFTR in USA.

A micro fission chamber is a ionization chamber, i.e., a small cylinder containing argon gas and a tiny amount of uranium (235U). As a neutron hits the uranium, a fission event will be generated and a pulsed signal triggered which can be translated into the amount of power generated. In ITER, the pencil size monitors will be located inside the vacuum vessel behind the blanket modules.

Recently, the conceptual design review for the ITER micro fission chamber, an effort lead by Luciano Bertalot and Anna Encheva, was concluded successfully with no "category 1" chits (no identified showstoppers). "The stringent quality control on ITER design enforced by the conceptual design review panel makes such events rare and highlights the outstanding teamwork within  the ITER Project," a relieved Anna Encheva commented the outcome of the two-day review.

Special thanks to Anna Encheva and Luciano Bertalot for their contribution to this article.


return to the latest published articles