Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Crane operator | A cabin in the sky

    There are times, at dusk, when the ITER construction platform resembles an airport, with roads and buildings illuminated by yellow and white lights. From their [...]

    Read more

  • Assembly | A colossal task made manageable

    For the execution of work during the next project phase—machine and plant assembly up to First Plasma—the ITER Organization has chosen a contractual approach th [...]

    Read more

  • Neutral Beam Test Facility | A new agreement for a new era

    The ITER Organization and the Italian consortium Consorzio RFX* have signed a new agreement governing the construction and operation of the ITER Neutral Beam Te [...]

    Read more

  • Load tests | Heavyweight champion

    The Assembly Hall, with its two giant tools towering 20 metres above ground, is one of the most spectacular locations on the ITER site. When a dummy load weighi [...]

    Read more

  • Fusion's new pioneers | How to go fast enough to make a difference

    Last month in New York, the Stellar Energy Foundation and the Fusion Industry Association co-hosted an invitation-only workshop: 'Roadmap to the Fusion Energy E [...]

    Read more

Of Interest

See archived entries

Measuring fusion power

Sabina Griffith

The microfission chamber unit is mounted on the vacuum vessel behind a blanket module. The base plate will be welded to the vacuum vessel, cooled by water coolant, and the plate will be cooled by heat conduction. (Click to view larger version...)
The microfission chamber unit is mounted on the vacuum vessel behind a blanket module. The base plate will be welded to the vacuum vessel, cooled by water coolant, and the plate will be cooled by heat conduction.
The measurement of the neutron emission stemming from the fusion reaction is a very important diagnostic because it is directly related to measuring the fusion power. A typical neutron counter is the fission chamber. This detector, originally developed as a monitor for fission reactors, has been applied for decades on various large fusion devices like JET in Europe, JT60 in Japan and TFTR in USA.

A micro fission chamber is a ionization chamber, i.e., a small cylinder containing argon gas and a tiny amount of uranium (235U). As a neutron hits the uranium, a fission event will be generated and a pulsed signal triggered which can be translated into the amount of power generated. In ITER, the pencil size monitors will be located inside the vacuum vessel behind the blanket modules.

Recently, the conceptual design review for the ITER micro fission chamber, an effort lead by Luciano Bertalot and Anna Encheva, was concluded successfully with no "category 1" chits (no identified showstoppers). "The stringent quality control on ITER design enforced by the conceptual design review panel makes such events rare and highlights the outstanding teamwork within  the ITER Project," a relieved Anna Encheva commented the outcome of the two-day review.

Special thanks to Anna Encheva and Luciano Bertalot for their contribution to this article.


return to the latest published articles