Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Last stages of assembly for behemoth tool

    Among the dozens of specially designed tools that will have a role to play in positioning and assembling ITER's giant machine components, two stand—literally—a [...]

    Read more

  • Kazakhstan expresses interest in collaboration

    The representatives of the nuclear institutions of Kazakhstan who visited ITER last Tuesday stated it simply and clearly: they are very interested in collaborat [...]

    Read more

  • Let there be light!

    Achieving fusion energy is more of a marathon than a sprint. And so is the production of a documentary film on fusion ... although in the beginning of their end [...]

    Read more

  • Safety control electronics remain fit after furious shaking

    ITER's nuclear safety control electronics have undergone a series of tests in order to demonstrate that they can continue to perform their functions flawlessly [...]

    Read more

  • Japan completes first 110-tonne winding pack

    Japan has the procurement responsibility for 9 of ITER's 19 superconducting toroidal field winding packs and all 19 of the toroidal field coil cases. In a major [...]

    Read more

Of Interest

See archived articles

Mapping the depths

-Robert Arnoux

The foundation system for the Rion-Antirion Bridge was designed by Alain Pecker, the veteran ''geotechnical engineer'' now working as an expert for ITER. (Click to view larger version...)
The foundation system for the Rion-Antirion Bridge was designed by Alain Pecker, the veteran ''geotechnical engineer'' now working as an expert for ITER.
The name may not be familiar, but the picture certainly is: this is the Rion-Antirion Bridge which spans the Gulf of Corinth and connects the Peloponnesus to mainland Greece.

Located in a highly seismic zone and resting on a fragile seabed of clay, sand and silt, this 2.9 km structure is widely considered as an engineering feat. It is designed to withstand wind speeds of more than 250 kilometres per hour, an earthquake of magnitude 7 on the Richter scale and the impact of a 180,000-ton tanker.

The man who designed the foundation system for the Rion-Antirion Bridge was on the ITER platform last week and will be seen a lot around the Tokamak Pit - the "Seismic Isolation Pit", as it should be referred to - in the coming months. His name is Alain Pecker; he is a veteran "geotechnical engineer" who, for the past 30 years, has worked on "integrating the nature of the geological substratum into the design basis of structures and installations" — several of them nuclear.

As excavation in the Seismic Pit is reaching the bedrock some 20 metres deep, geological engineers will have a much better ''view'' of the pit's rock slopes and of the substratum. (Click to view larger version...)
As excavation in the Seismic Pit is reaching the bedrock some 20 metres deep, geological engineers will have a much better ''view'' of the pit's rock slopes and of the substratum.
Pecker's job, as an expert for the ITER Organization, will be to confirm and refine the geological surveys and sampling that has been conducted on the platform since the site was chosen to host the installation.

As excavation in the Seismic Pit is reaching the bedrock, some 20 metres deep, the expert will have a much better "view" of the pit's rock slopes and of the substratum. "Some 360,000 tons will rest on this bottom," says Pecker. "Better make sure you know precisely what it is made of. Surprises are always possible."

Surprises, in the Seismic Pit's substratum, could come in the form of "karsts" — holes large and small that are bored by water erosion in the depths of the limestone bedrock and that the initial surveys could have missed.

Pecker's job (right, with ITER Nuclear Building Section Leader Laurent Patisson) will be to confirm and refine the geological surveys that have been conducted on the platform since the site was chosen to host the installation. (Click to view larger version...)
Pecker's job (right, with ITER Nuclear Building Section Leader Laurent Patisson) will be to confirm and refine the geological surveys that have been conducted on the platform since the site was chosen to host the installation.
Dealing with karsts, however, is routine work for a geotechnical engineer: whatever their size, and provided they are detected, the holes can be injected with concrete.

In order to locate karsts and other possible geological "accidents", like fissures, faults and other anomalies, a systematic survey will be conducted on the 130 by 90-metre zone of the pit's bottom and faces. In order to cover the position of all seismic pads, drillings will be carried out every 4 to 5 metres and up to 5 metres deep.

A radar survey will also be conducted, providing data for a 3-D rendering of the substratum.

This whole process could take two to three months. Then, when the depths have been mapped and the possible "holes" filled, it will be time to pour the "first concrete" of the Tokamak Complex Building basemat — a major milestone in the history of ITER.


return to the latest published articles