Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryolines | Out through the door, in through the roof

    Cooling fluids for the machine's magnets, thermal shield and cryopumps will travel to the Tokamak Building through a set of large multi-process pipes (cryolines [...]

    Read more

  • Image of the week | Next in line

    Of six ring-shaped coils required for the ITER Tokamak, poloidal field coil #6 (PF6) is the heaviest (400 tonnes) and the second smallest, with a diameter of 10 [...]

    Read more

  • Assembly tools | Strong base for a very heavy task

    The first part of the in-pit assembly tool has been installed in the Tokamak pit. When complete, the tool will stand more than 20 metres high and branch out in [...]

    Read more

  • Diagnostics | A stowaway on board toroidal field coil #8

    Hidden inside the steel case of the most recent toroidal field coil delivered to ITER—TF8, from Japan—is a unique and critical diagnostic device. Named after th [...]

    Read more

  • Vacuum vessel sector | A 90° tilt in mid-air

    Ever since ITER entered the machine assembly phase, some ten months ago, we have been treated to a few spectacular lifting operations. In May 2020, we watched t [...]

    Read more

Of Interest

See archived entries

Update on toroidal field coil manufacturing

Regular radial plate mockup in preparation for welding at the contractor SIMIC in Italy. (Click to view larger version...)
Regular radial plate mockup in preparation for welding at the contractor SIMIC in Italy.
A recently held meeting of the Integrated Product Team for ITER's toroidal field coils highlighted some of the manufacturing milestones reached for the coil structures and the coils themselves. The Chinese Domestic Agency presented the status of their procurement process for the magnet supports for which the call for tender has been launched.

Three contracts are already in place for the fabrication of a full scale prototype for the radial plates. The toroidal field coils use a conductor with a circular outer section that is contained in grooves in so-called "radial plates." There is one radial plate for each double pancake and the conductor is contained in grooves on each side. The radial plates measure 8.7 m x 13.8 m and weigh 5.5 tonnes each. Different manufacturing routes are utilized so that the Domestic Agencies can select the best solution from both the technical and cost point of view before launching into series production.

The manufacturing routes are:
  • hot rolled plates, forgings and powder hipped plates for the raw material;
  • narrow gap TIG welding, electron beam welding and laser welding for the assembly of the radial plate segments;
  • finish machining either before or after assembly and welding of the segments, eventually with a portal machine along the entire perimeter of the radial plate.
Forging of a curved radial plate segment to be delivered to CNIM in France. (Click to view larger version...)
Forging of a curved radial plate segment to be delivered to CNIM in France.
One contract has been placed with the company SIMIC S.p.A. in Italy, the second contract is with the company CNIM in France and the third one is with the company Toshiba in Japan. Regarding the winding for the toroidal field double pancakes, the company Toshiba is completing the optimization of the winding parameters with a dummy conductor and will start the fabrication of a 1/3rd scale double pancake winding in a few weeks. This double pancake winding will then be utilized for a vacuum pressure impregnation trial.


return to the latest published articles