Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

Neutrons join generations

Michael Loughlin, Nucl./Shield. Analysis and Coordinator

The neutron family (from left to right): Shrichand Jakhar (India), Hiro Iida (Japan), Mun-Seong Cheon (Korea), Raul Pampin (EU), Michael Loughlin (ITER), Russ Feder (US), Dieter Leichtle (EU), Masao Ishikawa (Japan), Jesus Izquierdo (EU), Eduard Polunovskiy (ITER). Taking part but not pictured Luciano Bertalot (ITER), Ulrich Fischer (EU), Alfred Hogenbirk (EU), Mahmoud Youssef (US); additional contributions from Zaixin Li (China) and the FDS Team (China). (Click to view larger version...)
The neutron family (from left to right): Shrichand Jakhar (India), Hiro Iida (Japan), Mun-Seong Cheon (Korea), Raul Pampin (EU), Michael Loughlin (ITER), Russ Feder (US), Dieter Leichtle (EU), Masao Ishikawa (Japan), Jesus Izquierdo (EU), Eduard Polunovskiy (ITER). Taking part but not pictured Luciano Bertalot (ITER), Ulrich Fischer (EU), Alfred Hogenbirk (EU), Mahmoud Youssef (US); additional contributions from Zaixin Li (China) and the FDS Team (China).
The integrity of all components of ITER is demonstrated by a suite of complex computer simulations. All of these components will be subject to nuclear radiation of varying degrees and neutronics analyses is required to determine radiation exposure and response of all of these components.

The size and complexity of this task means it cannot be addressed by just one party but is an integral part of the design process which is carried out within the ITER Organization and amongst all Domestic Agencies. How do we ensure the consistency and quality of these analyses carried out by many teams?

This was the question which was addressed at a meeting involving several experts representing the ITER Organization, Japan, India, Europe, Korea and the US as well as associations from within Europe. The aim was to improve the techniques of analysis and after three days of discussion the result was an improved understanding of the specification of how neutronics analyses should be done and reported.

This outcome was the product of a collaboration between younger scientists and some of the most experienced analysts in the world working together. The younger scientists take back to their countries the benefits of training in advance technologies of radiation transport modelling from the experience of older heads, who in return get the energy, enterprise and innovation from newcomers. These are some of the early spin-offs from the world wide collaborative effort which is ITER. It was also an occasion when new friends were made and an optimistic view of the future was engendered.

Click here if you want to find out how to golf with a neutron ...


return to the latest published articles