Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • FEC2020 | Seeking sponsors for 28th IAEA Fusion Energy Conference

    For only the third time since 1961, the International Atomic Energy Agency's Fusion Energy Conference will be taking place in France—hosted jointly by the Frenc [...]

    Read more

  • Nuclear safety | Under constant scrutiny

    Because one of the elements involved in the fusion reaction is the radioactive isotope tritium, and because the hydrogen fusion reaction itself generates a high [...]

    Read more

  • Power conversion | Alien structures and strange contraptions

    There are places in ITER that seem to belong to another world, places full of alien structures and strange contraptions. The feeling—a mixture of awe and puzzle [...]

    Read more

  • Tokamak Complex | A changing landscape

    For the past three years, the view from the top of the highest worksite crane has not changed much. Inside of the Tokamak Complex, 80 metres below, concrete gal [...]

    Read more

  • Ion cyclotron heating | How to pump 20 MW of power into 1 gram of plasma

    To power the ion cyclotron system, the ITER Organization and its partners are designing not only new antennas, which will be housed in the tokamak vessel, but a [...]

    Read more

Of Interest

See archived entries

EAST Tokamak achieves stationary H-mode plasmas

The Experimental Advanced Superconducting Tokamak (EAST) in Hefei (Photo: ASIPP)<br /><br /> (Click to view larger version...)
The Experimental Advanced Superconducting Tokamak (EAST) in Hefei (Photo: ASIPP)

Recently, a series of stationary H-mode plasmas have been achieved on the Chinese superconducting tokamak EAST. The H-mode campaign started on 14 September this year. The principal goals were to investigate the efficiency of radio frequency heating on minority hydrogen and the mode conversion scenario, and to explore existing capabilities for achieving H-mode plasmas and long-pulse plasma operations. Lithium wall conditioning has routinely been used to reduce both impurity and hydrogen recycling.



return to the latest published articles