Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • US completes toroidal field deliveries for ITER

    The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal fi [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

Of Interest

See archived articles

New equipment for the COMPASS Tokamak in Prague

-Jan Mlynář, Institute Of Plasma Physics, Prague

The powerful Neutral Beam Injector that will take the COMPASS tokamak to new regimes. (Click to view larger version...)
The powerful Neutral Beam Injector that will take the COMPASS tokamak to new regimes.
On 10 November, 2010, two trucks from the Siberian city of Novosibirsk rolled up to the COMPASS Tokamak at the Institute of Plasma Physics in Prague. The trucks unloaded box after box of high-tech components that had been shipped from the Russian Budker Institute of Nuclear Physics. A team of experienced technicians and physicists arrived from the Institute one week later. Their mission? To assemble and commission two powerful neutral beam injectors that will allow plasmas in the COMPASS Tokamak to reach temperatures ten times higher than previously achievable.

The Budker Institute of Nuclear Physics crafts neutral beam injectors for research centres all over the world, tailored each time to in-situ requirements. For COMPASS, the neutral beam injectors have been designed to deliver up to 300 kW of power to the plasma (one hundred times greater than the power of an electric oven) through a narrow aperture of 5cm for as long as 0,3 sec. In addition, beam modulation - where the neutral beam is switched on and off in a rapid sequence — is planned for measuring plasma characteristics, by directly comparing phenomena inherent to the plasma with phenomena induced by interaction of the injected beam and the plasma.

In COMPASS, two configurations will be possible. Either the neutral beam injectors will deliver parallel beams to the plasma - maximizing the heating effect - or they will inject beams in opposite directions to balance the force momentum on the plasma and keep plasma rotation very low. This flexibility considerably increases the plasma research possibilities on the COMPASS Tokamak.

At present, without the heating beams, the COMPASS Tokamak can reach plasma temperatures of several million Kelvin. With the two new neutral beam injectors, we expect to reach 50 million Kelvin - a record both for the Czech fusion research and for the COMPASS Tokamak.


return to the latest published articles