Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

  • Image of the week | Shiny steel and sharp edges

    All shiny steel, sharp edges and perfectly machined penetrations and grooves, two toroidal field coils are being prepared for the pre-assembly process. The sp [...]

    Read more

  • Vacuum vessel sector #6 | On its way

    A 440-tonne, 40-degree sector of the ITER vacuum vessel left Busan, Korea, on Sunday 28 June. A unique component has taken to the sea—one that was more than t [...]

    Read more

  • Top management | Keun-Kyeong Kim, Head of Construction

    In the small Korean village (25 houses!) where Keun-Kyeong Kim spent the first eight years of his life, there was no electricity— just batteries to power transi [...]

    Read more

Of Interest

See archived entries

Trial time for central solenoid

Paul Libeyre, Central Solenoid & Correction Coil Section Leader

In front of the central solenoid conductor jacket bending trials, from left to right: Chris Rey (US-DA), Paul Libeyre (ITER), Charles Lyraud (ITER) and Wayne Reiersen (US-DA). (Click to view larger version...)
In front of the central solenoid conductor jacket bending trials, from left to right: Chris Rey (US-DA), Paul Libeyre (ITER), Charles Lyraud (ITER) and Wayne Reiersen (US-DA).
The ITER central solenoid is an essential part of the ITER magnet system, responsible for driving the current inside of the plasma. Procurement for the central solenoid will be shared between the Japanese Domestic Agency (JA-DA), in charge of conductor manufacture, and the US-DA, in charge of manufacturing the coils and associated structure.

In October 2010, the US-DA launched a call for tender to select a coil manufacturer, and the contract with industry is expected to be placed in spring 2011. In advance of manufacture, R&D actions are currently underway to address some of the more critical areas of this technically-challenging fabrication process (see below).

Nicolai Martovetsky (US-DA) monitoring a central solenoid conductor jacket winding trial. The winding tool pictured was originally used to wind the central solenoid model coil in the 1990s. (Click to view larger version...)
Nicolai Martovetsky (US-DA) monitoring a central solenoid conductor jacket winding trial. The winding tool pictured was originally used to wind the central solenoid model coil in the 1990s.
Mid-January, representatives of the ITER Organization paid a visit to the US-DA to review and discuss the available results of these ongoing actions.

Wayne Reiersen, Magnet team leader at the US-DA, presented the winding trials performed on empty central solenoid conductor jacket sections "within reasonably good accuracy" (above). This achievement was made possible by the use of a winding tool (left) that had formerly been used to wind the central solenoid model coil in the 1990s, refurbished by an industrial partner near Oak Ridge, Tennessee. The successful shaping of the turn joggle that provides transition from one turn to the next inside of a central solenoid pancake was also demonstrated (below).

Further trials are planned on the shaping of the conductor in the area where a sharp bend occurs as the conductor exits the winding-pack to reach the terminals. Preliminary trials have shown that bending the cable on a radius as small as 100 mm is achievable without too much deformation.

 
Background information on the central solenoid:

The shaping of the turn joggles was achieved with good accuracy. (Click to view larger version...)
The shaping of the turn joggles was achieved with good accuracy.
The ITER central solenoid is split into six coils called modules, stacked one on top of the other and inserted into the free space in the middle of the torus that is formed by the toroidal field magnets. In order to maximize the total flux available to generate and sustain the plasma current, the number of turns (553) in each central solenoid coil is designed to be as large as possible. At the same time, the maximum magnetic field on the conductor must remain within the 13 T limit, providing enough margin for the Nb3Sn conductor operating at 4.5 K. The inner radius of one central solenoid module is 1.3 m, its outer radius 2.1 m and its height 2.15 m. The conductor is a
cable-in-conduit conductor, with a square outer cross-section of 49 mm x 49 mm and an inner circular cable diameter of 32.6 mm. As the unit length of such a conductor will not exceed 918 m, it will be necessary to wind six unit lengths of 918 m and one unit length of 613 m for each module and to connect them with joints in order to reach the 6.1 km needed for 553 turns. The accurate winding of such a thick conductor into multiple pancakes with 14 turns each is indeed a serious challenge that has not yet been demonstrated; at the time of the central solenoid model coil program, layer winding, and not pancake winding, was used.


return to the latest published articles