Subscribe options

Select your newsletters:


Please enter your email address:

@

New brochure highlights fusion spinoffs

-Sabina Griffith

A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter) (Click to view larger version...)
A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter)
While challenges remain in harnessing fusion as an energy source, significant advances have been made in the last decades. Beyond moving fusion closer to the point of industrialization, there have been lesser-known spinoff benefits to the development of fusion technology, including applications in engineering, diagnostics, superconducting technologies, and medicine.

For example, early work in magnetic fusion energy led General Atomics, a San Diego-based innovation firm, to improve power systems for the US government and commercial customers. Technological advances include the Electromagnetic Aircraft Launch System (EMALS), an electromagnetic catapult that will replace steam catapults used currently on aircraft carriers.

 (Click to view larger version...)
The Milliwave Thermal Analyzer is another fusion spinoff used to monitor the properties of materials in extreme conditions, for example inside a glass melter. This new technology, adopted from diagnostics developed for fusion environments, can withstand previously inaccessible conditions.

Other examples of how technology developed for fusion has found its way into other disciplines are: a new generation of compact cyclotrons which can successfully be used in cancer therapy; and a new method of improved polymer-electrode bonding using plasma which is hoped to lead to creating superior artificial muscles to benefit people with disabilities.

These and more examples are listed in a new brochure produced by the US Fusion Communications Group Fusion Spinoffs: Making a Difference Today that can be downloaded here
 


return to the latest published articles