Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

New brochure highlights fusion spinoffs

Sabina Griffith

A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter) (Click to view larger version...)
A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter)
While challenges remain in harnessing fusion as an energy source, significant advances have been made in the last decades. Beyond moving fusion closer to the point of industrialization, there have been lesser-known spinoff benefits to the development of fusion technology, including applications in engineering, diagnostics, superconducting technologies, and medicine.

For example, early work in magnetic fusion energy led General Atomics, a San Diego-based innovation firm, to improve power systems for the US government and commercial customers. Technological advances include the Electromagnetic Aircraft Launch System (EMALS), an electromagnetic catapult that will replace steam catapults used currently on aircraft carriers.

 (Click to view larger version...)
The Milliwave Thermal Analyzer is another fusion spinoff used to monitor the properties of materials in extreme conditions, for example inside a glass melter. This new technology, adopted from diagnostics developed for fusion environments, can withstand previously inaccessible conditions.

Other examples of how technology developed for fusion has found its way into other disciplines are: a new generation of compact cyclotrons which can successfully be used in cancer therapy; and a new method of improved polymer-electrode bonding using plasma which is hoped to lead to creating superior artificial muscles to benefit people with disabilities.

These and more examples are listed in a new brochure produced by the US Fusion Communications Group Fusion Spinoffs: Making a Difference Today that can be downloaded here
 


return to the latest published articles