Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • In-vessel electrical systems | What it takes to wire up a fusion reactor

    While the challenges of keeping cables operational in harsh environments such as jet engines and nuclear fission reactors have been understood for a long time, [...]

    Read more

  • Assembly preparation | Off goes the lid

    In the summer of 2017, a circular platform was installed inside of the large steel-and-concrete cylinder of the Tokamak pit. The 200-tonne structure was meant t [...]

    Read more

  • Deliveries | Two coils on their way

    For the past five years, 'highly exceptional loads' (HEL) have been successfully travelling along the ITER Itinerary to be delivered to the ITER site. As the pr [...]

    Read more

  • ITER NOW video | Ready for the big lifts

    This new video in our "ITER NOW" series provides an insider's view of the recent load tests performed as the ITER Organization prepares for the machin [...]

    Read more

  • Divertor | Far more than a fancy ashtray

    It has been likened to the filter of a swimming pool or an oversized ashtray. It has been called alien in shape and hellish in its affinity for heat. But whatev [...]

    Read more

Of Interest

See archived entries

New brochure highlights fusion spinoffs

Sabina Griffith

A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter) (Click to view larger version...)
A physics student studying plasma behaviour at the Princeton Plasma Physics Laboratory. (Photo: Peter Ginter)
While challenges remain in harnessing fusion as an energy source, significant advances have been made in the last decades. Beyond moving fusion closer to the point of industrialization, there have been lesser-known spinoff benefits to the development of fusion technology, including applications in engineering, diagnostics, superconducting technologies, and medicine.

For example, early work in magnetic fusion energy led General Atomics, a San Diego-based innovation firm, to improve power systems for the US government and commercial customers. Technological advances include the Electromagnetic Aircraft Launch System (EMALS), an electromagnetic catapult that will replace steam catapults used currently on aircraft carriers.

 (Click to view larger version...)
The Milliwave Thermal Analyzer is another fusion spinoff used to monitor the properties of materials in extreme conditions, for example inside a glass melter. This new technology, adopted from diagnostics developed for fusion environments, can withstand previously inaccessible conditions.

Other examples of how technology developed for fusion has found its way into other disciplines are: a new generation of compact cyclotrons which can successfully be used in cancer therapy; and a new method of improved polymer-electrode bonding using plasma which is hoped to lead to creating superior artificial muscles to benefit people with disabilities.

These and more examples are listed in a new brochure produced by the US Fusion Communications Group Fusion Spinoffs: Making a Difference Today that can be downloaded here
 


return to the latest published articles