Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • FEC2020 | Seeking sponsors for 28th IAEA Fusion Energy Conference

    For only the third time since 1961, the International Atomic Energy Agency's Fusion Energy Conference will be taking place in France—hosted jointly by the Frenc [...]

    Read more

  • Nuclear safety | Under constant scrutiny

    Because one of the elements involved in the fusion reaction is the radioactive isotope tritium, and because the hydrogen fusion reaction itself generates a high [...]

    Read more

  • Power conversion | Alien structures and strange contraptions

    There are places in ITER that seem to belong to another world, places full of alien structures and strange contraptions. The feeling—a mixture of awe and puzzle [...]

    Read more

  • Tokamak Complex | A changing landscape

    For the past three years, the view from the top of the highest worksite crane has not changed much. Inside of the Tokamak Complex, 80 metres below, concrete gal [...]

    Read more

  • Ion cyclotron heating | How to pump 20 MW of power into 1 gram of plasma

    To power the ion cyclotron system, the ITER Organization and its partners are designing not only new antennas, which will be housed in the tokamak vessel, but a [...]

    Read more

Of Interest

See archived entries

Feeding the mighty Jaguar

Eric Gedenk, Oak Ridge Leadership Computing Facility

Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL. (Click to view larger version...)
Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL.
Until ITER is built, science must rely on simulations to find the optimal conditions with which ITER could produce the most energy. A team around Zhihong Lin, physicist at the University of California—Irvine and principal investigator at the Oak Ridge Leadership Computing Facility (OLCF), is busy feeding the mighty Jaguar Supercomputer to simulate all of the chaotic movements in a fusion plasma simultaneously.

The 35 million hours allotted to his team's project in 2011 will go toward not only simulations of ITER fusion plasmas, but also toward preparing codes for next-generation supercomputers.

Click here to find out more about the Jaguar Supercomputer.


return to the latest published articles