Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Divertor | Far more than a fancy ashtray

    It has been likened to the filter of a swimming pool or an oversized ashtray. It has been called alien in shape and hellish in its affinity for heat. But whatev [...]

    Read more

  • Council milestone #50 | The way to assembly is open

    Passing an ITER Council milestone is always an achievement. Passing this milestone at this moment is much more than that: it is a demonstration that, despite th [...]

    Read more

  • Deliveries | A third magnet ready for transport to ITER

    Three ITER magnets are now in transit to ITER from different points on the globe—two toroidal field magnets and one poloidal field coil. In terms of component w [...]

    Read more

  • Heaviest load yet | Europe's coil soon to hit the road

    It's big, it's heavy, it's precious and it's highly symbolic: the toroidal field coil that was unloaded at Marseille industrial harbour on 17 March is the most [...]

    Read more

  • Russia's ring coil | Entering the final sequence

    The smallest of ITER's poloidal field coils is entering the final sequence in a long series of activities that transform cable-in-conduit superconductor into a [...]

    Read more

Of Interest

See archived entries

Feeding the mighty Jaguar

Eric Gedenk, Oak Ridge Leadership Computing Facility

Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL. (Click to view larger version...)
Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL.
Until ITER is built, science must rely on simulations to find the optimal conditions with which ITER could produce the most energy. A team around Zhihong Lin, physicist at the University of California—Irvine and principal investigator at the Oak Ridge Leadership Computing Facility (OLCF), is busy feeding the mighty Jaguar Supercomputer to simulate all of the chaotic movements in a fusion plasma simultaneously.

The 35 million hours allotted to his team's project in 2011 will go toward not only simulations of ITER fusion plasmas, but also toward preparing codes for next-generation supercomputers.

Click here to find out more about the Jaguar Supercomputer.


return to the latest published articles