Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

Feeding the mighty Jaguar

Eric Gedenk, Oak Ridge Leadership Computing Facility

Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL. (Click to view larger version...)
Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL.
Until ITER is built, science must rely on simulations to find the optimal conditions with which ITER could produce the most energy. A team around Zhihong Lin, physicist at the University of California—Irvine and principal investigator at the Oak Ridge Leadership Computing Facility (OLCF), is busy feeding the mighty Jaguar Supercomputer to simulate all of the chaotic movements in a fusion plasma simultaneously.

The 35 million hours allotted to his team's project in 2011 will go toward not only simulations of ITER fusion plasmas, but also toward preparing codes for next-generation supercomputers.

Click here to find out more about the Jaguar Supercomputer.


return to the latest published articles