Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • US completes toroidal field deliveries for ITER

    The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal fi [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

Of Interest

See archived articles

Feeding the mighty Jaguar

-Eric Gedenk, Oak Ridge Leadership Computing Facility

Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL. (Click to view larger version...)
Simulations track turbulence and transport of energetic helium particles in ITER. Image courtesy of Don Spong, ORNL.
Until ITER is built, science must rely on simulations to find the optimal conditions with which ITER could produce the most energy. A team around Zhihong Lin, physicist at the University of California—Irvine and principal investigator at the Oak Ridge Leadership Computing Facility (OLCF), is busy feeding the mighty Jaguar Supercomputer to simulate all of the chaotic movements in a fusion plasma simultaneously.

The 35 million hours allotted to his team's project in 2011 will go toward not only simulations of ITER fusion plasmas, but also toward preparing codes for next-generation supercomputers.

Click here to find out more about the Jaguar Supercomputer.


return to the latest published articles