Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Pre-compression rings to last longer than ITER

Juan Knaster, Technical Officer, TF coils and pre-compression rings

Model ring after rupture test with a breaking stress over 1500 MPa. (Click to view larger version...)
Model ring after rupture test with a breaking stress over 1500 MPa.
The pre-compression rings of the ITER magnet system will tightly hold the toroidal field coils on top and bottom with a radial force of 7,000 tonnes per coil. The most suitable material to withstand such high loads and avoid circulation of currents during machine operation is glass-fiber/epoxy composite.

Most metals at the stresses generated in the composite of the rings would break. And yet the role of the pre-compression rings is essential, since in their absence the ITER toroidal field coils would fail by fatigue before the 30,000 plasma pulses expected during their design life of 20 years.

The ITER pre-compression rings are possibly the most massive composite structures ever attempted. More than one decade of thorough R&D work at ENEA (Frascati) managed to overcome all the initial technical challenges.

At ENEA, a purpose-designed machine stressed model pre-compression rings to test their strength and observed a rupture point at approximately four times the expected operational stresses of ITER.

Graph showing the breaking time in hours for different percentages of the long-term breaking stress divided by the known average rupture stress (UTS) for specimens, in black, and model rings, in red. The points with an arrow indicate that the element tested was removed from the testing equipment unbroken. (Click to view larger version...)
Graph showing the breaking time in hours for different percentages of the long-term breaking stress divided by the known average rupture stress (UTS) for specimens, in black, and model rings, in red. The points with an arrow indicate that the element tested was removed from the testing equipment unbroken.
However, the possibility of degradation over time (creep) was a concern. The team established a curve describing long-term performance of the rings' material with small test specimens continuously loaded at different stresses over a span of three years.

ENEA's purpose-designed machine was then used to assess the long-term behaviour of the rings. Due to the non-linear behaviour and different material properties along different directions of composites, a correlation between tested specimens and model rings was difficult to establish, since the model rings could only withstand stresses of around 70 percent of those observed for small specimens.

However, an intelligent handling of the available data carried out by the team of Paolo Rossi at ENEA by plotting together the percentage of the breaking point of the long-term tests of small specimens and model rings over the known rupture stress, shows a correlation that predicts that the rings under ITER's operational stresses (<30 percent of the rings' measured and specified breaking point) would maintain their tension for many years, much more than the life of ITER.


return to the latest published articles