Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Real-time collaboration delivers for fusion computing

    A key computing system for ITER is now being trialled at the European tokamak JET, following collaboration betweenteams at the UK's Culham Centre for Fusion Ene [...]

    Read more

  • The balance of power

    It comes as no surprise that the French railway operator SNCF is the largest consumer of electricity in the country—it takes a lot of megawatts to power 500 sup [...]

    Read more

  • "Dummy" winding takes shape

    As orange lights flash and machines softly hum, layer one of a 'dummy' pancake winding (the building block of a poloidal field coil) is taking shape on the wind [...]

    Read more

  • As big (and heavy) as a whale

    It was pouring when the two 35-metre-long quench tanks were delivered to the ITER site at 2:12 a.m. on Thursday 24 November. And it was still raining heavily on [...]

    Read more

  • A passage to India

    108 days, 10,200 kilometres, 16 countries, and only two flat tires. These are the remarkable statistics of a no-less-remarkable journey: a father and son who tr [...]

    Read more

Of Interest

See archived articles

Pre-compression rings to last longer than ITER

-Juan Knaster, Technical Officer, TF coils and pre-compression rings

Model ring after rupture test with a breaking stress over 1500 MPa. (Click to view larger version...)
Model ring after rupture test with a breaking stress over 1500 MPa.
The pre-compression rings of the ITER magnet system will tightly hold the Toroidal Field (TF) coils on top and bottom with a radial force of 7,000 tons per coil. The most suitable material to withstand such high loads and avoid circulation of currents during machine operation is glass-fiber/epoxy composite.

Most metals at the stresses generated in the composite of the rings would break. And yet the role of the pre-compression rings is essential, since in their absence the ITER TF coils would fail by fatigue before the 30,000 plasma pulses expected during their design life of 20 years.

The ITER pre-compression rings are possibly the most massive composite structures ever attempted. More than one decade of thorough R&D work at ENEA (Frascati) managed to overcome all the initial technical challenges.

At ENEA, a purpose-designed machine stressed model pre-compression rings to test their strength and observed a rupture point at approximately four times the expected operational stresses of ITER.

Graph showing the breaking time in hours for different percentages of the long-term breaking stress divided by the known average rupture stress (UTS) for specimens, in black, and model rings, in red. The points with an arrow indicate that the element tested was removed from the testing equipment unbroken. (Click to view larger version...)
Graph showing the breaking time in hours for different percentages of the long-term breaking stress divided by the known average rupture stress (UTS) for specimens, in black, and model rings, in red. The points with an arrow indicate that the element tested was removed from the testing equipment unbroken.
However, the possibility of degradation over time (creep) was a concern. The team established a curve describing long-term performance of the rings' material with small test specimens continuously loaded at different stresses over a span of three years.

ENEA's purpose-designed machine was then used to assess the long-term behaviour of the rings. Due to the non-linear behaviour and different material properties along different directions of composites, a correlation between tested specimens and model rings was difficult to establish, since the model rings could only withstand stresses of around 70 percent of those observed for small specimens.

However, an intelligent handling of the available data carried out by the team of Paolo Rossi at ENEA by plotting together the percentage of the breaking point of the long-term tests of small specimens and model rings over the known rupture stress, shows a correlation that predicts that the rings under ITER's operational stresses (<30 percent of the rings' measured and specified breaking point) would maintain their tension for many years, much more than the life of ITER.


return to the latest published articles