Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

  • Assembly | Set of handling tools for in-vessel installation finalized

    Inside of a test facility that reproduces the volume and geometry of the ITER vacuum vessel environment, a team from CNIM Systèmes Industriels has dem [...]

    Read more

  • 360° image of the week | The assembly theatre

    Ever since it was invented almost two centuries ago, photography has tried to capture what the human eye actually sees. Despite huge progress achieved, it has n [...]

    Read more

Of Interest

See archived entries

1991: Fusion power is born

Internal view of the JET vacuum vessel. Photo courtesy: EFDA/JET (Click to view larger version...)
Internal view of the JET vacuum vessel. Photo courtesy: EFDA/JET
Scientists are a careful and deliberate kind. They won't rush in; they like to be sure that everything is working before trying something new. Sometimes they will wait years, decades even, before finally allowing themselves to try the very thing that they have dedicated so much time and effort to.

The seventh of November, 1991, was such a day. After nearly four decades of research and preparation, the world would finally witness the first deuterium-tritium experiment at JET. Up to that time all fusion experiments had been conducted with a proxy: a deuterium-only (D-D) plasma—an almost identical gas, but easier to handle than radioactive tritium. D-D reactions, however, do not generate the power output of the real fuel.

But on this day, the practice runs were over. As they had done many times before, the operators turned the magnets up to 2.8 Tesla. They fired the discharge and created a stable H-mode plasma with current of 3 mega-amps. When they were sure that everything was stable, they opened the two neutral beam injectors that had been newly adapted for tritium and sent in a tiny shot of fuel, containing only 1 percent tritium.

Suddenly, theoretical fusion reaction became real. Neutrons flooded into the detectors, and were measured at a peak rate of nearly 1017 per second. The heating systems felt their load lifted as the hot helium nuclei began to buoy the plasma's energy levels. Power levels surged to levels high enough to run the surrounding villages, and then it was all over. In a mere second, decades of research and experimentation had culminated in success.

With these few short pulses, using less than a fifth of a gram of tritium, JET opened the door for future research. Aside from the production of 1.5 MW of power, the know-how for handling tritium and the measurement of its behaviour in a plasma gave the JET team the confidence to plan a full deuterium-tritium campaign for four years down the track, which ultimately set the world record for fusion power that still stands today.


return to the latest published articles