JET: An ITER-like wall and experiments with tritium
The Joint European Torus (JET), located at Culham Centre for Fusion Energy in the UK, is the world's largest and most powerful tokamak in operation today and the focal point of European fusion research.
Designed to study fusion in conditions approaching those needed for a power plant, it is the only device that can handle the deuterium-tritium fuel mix that will be used in ITER (and in later fusion power plants). In operation since 1983, milestones at JET have included the world's first controlled release of deuterium-tritium fusion power (1991) and the world record for fusion power (16 megawatts in 1997).
In recent years, the program's primary task has been to prepare for the construction and operation of ITER by acting as a test bed for ITER technologies and plasma operating scenarios:
* upgraded with an ITER-like beryllium and tungsten wall and additional heating power, JET enables scientists to develop plasma scenarios that resemble as closely as possible those planned for ITER, investigate the interaction of the plasma with wall materials, and study the accumulation of tungsten from the wall in the plasma core;
* experiments to characterize the melting behaviour of tungsten run on the JET divertor provided valuable physics data input for the ITER divertor strategy (the choice to install a tungsten divertor from the start) and continue to inform divertor physics in advance of ITER operation;
* with ITER-like regimes of plasma operation, scientists have the opportunity to study plasma instabilities such as ELMs (see DIII-D) and develop methods to predict and mitigate these instabilities;
* current plans for JET foresee a scientific campaign with deuterium-tritium (D-T) plasmas in 2020. These experiments (the first to use tritium at JET since 2003) will act as an important "dress rehearsal" in preparation for ITER's operation with tritium.
The European Consortium for the Development of Fusion Energy, EUROfusion, provides the work platform to exploit JET.
Read more about JET here.