Lettres d'information

Choisissez ce que vous souhaitez recevoir :


Merci de renseigner votre adresse de messagerie électronique :

@
Les objectifs d'ITER

La science

 (Click to view larger version...)
La quantité d'énergie de fusion qu'un tokamak peut produire dépend du nombre de réactions de fusion qui se produisent en son cœur. Plus l'enceinte est grande (et donc également le volume de plasma) plus grand sera le potentiel de production d'énergie de fusion.

Avec un volume de plasma dix fois supérieur à celui de la plus grande machine de fusion opérationnelle aujourd'hui, le tokamak ITER sera un outil expérimental unique, capable de générer des plasmas de longue durée. La machine a été spécifiquement conçue pour :

1) Produire 500 MW de puissance de fusion pour 400 s

Le record de puissance de fusion produite est détenu par le tokamak européen JET. En 1997, ce tokamak a généré 16 MW de puissance de fusion pour une puissance de chauffage totale de 24 MW. Ce ratio (ou « Q ») de 0,67 devrait être porté à 10 par ITER—500 MW de puissance de fusion pour une puissance en entrée de 50 MW, pendant des périodes de 400 à 600 s, la première machine capable de produire une une quantité d'énergie nette. ITER étant une machine expérimentale qui ne fonctionnera pas de manière continue, l'énergie produite ne sera pas convertie en électricité. Cette étape sera réalisée par la machine qui lui succédera.

2) Démontrer le fonctionnement intégré des technologies d'une centrale de fusion électrogène

ITER marque la transition entre les dispositifs de fusion expérimentaux actuels et les démonstrateurs industriels du futur. Avec cette machine de très grande taille, les scientifiques pourront étudier les plasmas dans les conditions qui seront celles d'une centrale de fusion électrogène et tester des technologies telles que le chauffage, le contrôle, le diagnostic, la cryogénie et la télémaintenance.

3) Réaliser un plasma deutérium-tritium auto-entretenu

La recherche sur la fusion se trouve aujourd'hui au seuil de l'exploration du « plasma en combustion » — un plasma au sein duquel la chaleur de la réaction de fusion demeure confinée de manière suffisamment efficace pour entretenir une réaction de longue durée. ITER sera la seule installation de fusion au monde capable de produire un plasma en combustion, offrant ainsi aux scientifiques l'opportunité unique de faire avancer la science. 

4) Expérimenter la production de tritium

Dans une phase d'exploitation ultérieure, l'une des missions d'ITER consistera à démontrer la faisabilité de la production de tritium au sein même de l'enceinte à vide. L'inventaire mondial de tritium (utilisé avec le deutérium pour alimenter la réaction de fusion) n'est en aucun cas suffisant pour couvrir les besoins des futures centrales de fusion électrogènes. ITER offrira l'opportunité unique de tester des maquettes de couvertures « tritigènes » dans l'environnement d'un réacteur de fusion.

5) Démontrer la sûreté d'un dispositif de fusion

Une étape importante dans l'histoire de la fusion a été franchie en 2012 quand ITER Organization, après un examen rigoureux de ses dossiers de sûreté, a obtenu l'autorisation de création de l'installation nucléaire ITER et en est devenu l'opérateur nucléaire. L'un des principaux objectifs d'ITER est de démontrer que les réactions de fusion qui se produisent au sein du plasma sont sans impact sur les populations et l'environnement.

 (Click to view larger version...)
Le chantier de construction d'ITER qui a été lancé en 2010 devrait durer dix ans. Puis, les éléments fournis par les membres d'ITER sous forme de contributions en nature (pour la machine et les systèmes annexes) seront assemblés sur le site selon des séquences prédéfinies. Viendra ensuite une phase de tests durant laquelle il faudra s'assurer que tous les systèmes fonctionnent de manière coordonnée et préparer la machine pour réaliser le premier plasma.

La phase d'exploitation devrait durer vingt ans. Lors d'une période de mise en route qui s'étendra sur plusieurs années, la machine ne mettra en œuvre que de l'hydrogène et demeurera accessible pour les interventions de réparation. Cette phase permettra de tester les régimes physiques les plus prometteurs. Elle sera suivie d'une période de fonctionnement avec un combustible combinant du deutérium et une petite quantité de tritium pour tester les dispositifs de protection. Enfin, les ingénieurs lanceront une troisième phase durant laquelle la machine fonctionnera de plus en plus fréquemment à plein régime, avec un mélange à parts égales de deutérium et de tritium. La puissance de fusion sera alors portée à son maximum.