Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Lower cylinder | A transfer that felt like art

    Art has little to do with the transfer of a giant component. On Monday however, as ITER was preparing to celebrate Leonardo da Vinci's 500th anniversary, scienc [...]

    Read more

  • Event | ITER in Da Vinci mode

    'The most noble pleasure is the joy of understanding.' Written more than 500 years ago in the private journal of Leonardo da Vinci, these words still felt timel [...]

    Read more

  • Image of the week | When the Pit inspires an artist

    On a Sunday morning, when all is silent and still on the ITER platform, an eerie dimension is added to the Tokamak Pit. Hidden eyes seem to peer through the [...]

    Read more

  • Leonardo and innovation | In the steps of a giant

    To the members of a panel on innovation and Italian leadership, the moderator had one question: how do you see Leonardo da Vinci's scientific method—a systemati [...]

    Read more

  • Image of the week | Sandblasting

    Whether at home or in a nuclear installation, a painting job begins with surface preparation. In the ITER Tokamak Pit, close to 3,000 square metres of wall need [...]

    Read more

Of Interest

See archived entries

Latest tests show positive conductor performance

Sabina Griffith

The assembled conductor sample CSIO ready for testing at the Sultan Test Facility. Photo courtesy (2): EPFL-CRPP (Click to view larger version...)
The assembled conductor sample CSIO ready for testing at the Sultan Test Facility. Photo courtesy (2): EPFL-CRPP
The performance degradation problem that was found in a conductor for ITER's central solenoid last year seems to be solved.

As part of a comprehensive R&D program that was launched following unsatisfactory test results, a new conductor was fabricated; recent tests performed at the SULTAN Test Facility in Switzerland show good results. The new conductor sample was submitted to 10,000 magnetic load cycles and two warm-up / cool-down cycles, mimicking one-sixth of the full operational life of ITER's central solenoid.

"Compared to the tests performed last year, the conductor now shows a level of degradation much closer to that originally anticipated in the design, and the rate of degradation with magnetic cycling is stabilizing," explains Neil Mitchell, head of ITER's Magnet Division.

A close-up of the unwrapped cable. (Click to view larger version...)
A close-up of the unwrapped cable.
The tested conductor sample has two new features with respect to previous samples: First, it relies on a different strand manufacturing process, referred to as "internal tin", which has shown good resistance to mechanical bending loads in individual strand tests. Second, it compares two design options: In one, the original cable design is used, with two superconducting strands (copper to non-copper ratio 1:1.0) and one copper strand forming the triplet that is the basis of the cable structure. In the other, three superconducting strands (copper to non-copper ratio 1:1.5) are used. In this three-superconducting strand option, the loads on individual strands are reduced and extra superconducting material is added.

Proof: The graph showing the degradation behaviour of sample CSIO after ~11 000 cycles. (Click to view larger version...)
Proof: The graph showing the degradation behaviour of sample CSIO after ~11 000 cycles.
The root cause of the problems observed in the original tests is believed to be the high magnetic loads accumulating on the strands in the cable-in-conduit conductor. To maintain a low level of coupling losses in the pulsed conditions required in a central solenoid designed for a tokamak machine such as ITER, the contact between strands needs to be limited. However, the strands also need to be supported transversally to limit bending under the Lorentz load. If the strands deform too much, it can lead to gradual fracture of the brittle superconducting filaments and degradation in superconducting performance.


return to the latest published articles