Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Portfolio | Sector repair has started

    Built up against vacuum vessel sector #7, the scaffolding reaches almost 20 metres in height and masks the massive component. Streaks of blinding light, filtere [...]

    Read more

  • Fusion world | Public/private consortium is building the DTT tokamak

    The Divertor Test Tokamak in Italy is creating a new model for engagement with industry in fusion research. ITER helped to pave the way. The Divertor Test Tokam [...]

    Read more

  • Image of the week | An architectural paradox

    There is something deliberately paradoxical in the architectural treatment of the ITER buildings. On the one hand, the alternation between the mirror-like stai [...]

    Read more

  • Former French Prime Minister | A fan then and now

    For Jean-Pierre Raffarin, former Prime Minister of France (2002-2005) who visited ITER on Friday 15 March, touring the ITER installation with ITER Director-Gene [...]

    Read more

  • CARE at ITER | New project values launched

    Collaboration, Accountability, Respect and Excellence drive the future of fusion for a diverse staff. When Pietro Barabaschi joined as ITER Director-General to [...]

    Read more

Of Interest

See archived entries

Latest tests show positive conductor performance

The assembled conductor sample CSIO ready for testing at the Sultan Test Facility. Photo courtesy (2): EPFL-CRPP (Click to view larger version...)
The assembled conductor sample CSIO ready for testing at the Sultan Test Facility. Photo courtesy (2): EPFL-CRPP
The performance degradation problem that was found in a conductor for ITER's central solenoid last year seems to be solved.

As part of a comprehensive R&D program that was launched following unsatisfactory test results, a new conductor was fabricated; recent tests performed at the SULTAN Test Facility in Switzerland show good results. The new conductor sample was submitted to 10,000 magnetic load cycles and two warm-up / cool-down cycles, mimicking one-sixth of the full operational life of ITER's central solenoid.

"Compared to the tests performed last year, the conductor now shows a level of degradation much closer to that originally anticipated in the design, and the rate of degradation with magnetic cycling is stabilizing," explains Neil Mitchell, head of ITER's Magnet Division.

A close-up of the unwrapped cable. (Click to view larger version...)
A close-up of the unwrapped cable.
The tested conductor sample has two new features with respect to previous samples: First, it relies on a different strand manufacturing process, referred to as "internal tin", which has shown good resistance to mechanical bending loads in individual strand tests. Second, it compares two design options: In one, the original cable design is used, with two superconducting strands (copper to non-copper ratio 1:1.0) and one copper strand forming the triplet that is the basis of the cable structure. In the other, three superconducting strands (copper to non-copper ratio 1:1.5) are used. In this three-superconducting strand option, the loads on individual strands are reduced and extra superconducting material is added.

Proof: The graph showing the degradation behaviour of sample CSIO after ~11 000 cycles. (Click to view larger version...)
Proof: The graph showing the degradation behaviour of sample CSIO after ~11 000 cycles.
The root cause of the problems observed in the original tests is believed to be the high magnetic loads accumulating on the strands in the cable-in-conduit conductor. To maintain a low level of coupling losses in the pulsed conditions required in a central solenoid designed for a tokamak machine such as ITER, the contact between strands needs to be limited. However, the strands also need to be supported transversally to limit bending under the Lorentz load. If the strands deform too much, it can lead to gradual fracture of the brittle superconducting filaments and degradation in superconducting performance.


return to the latest published articles