Testing plasma-facing components in St Petersburg

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryodistribution | Blowing cold and hot

    If the cryodistribution system were a railroad, the cryogenic termination cold box would be its main switch. A massive structure packed with pipes, valves, elec [...]

    Read more

  • Pre-assembly activities | Captured from on high

    With assembly tools standing 22 metres tall, massive bridge cranes straddling the width of the building, and alien-shaped components placed at regular intervals [...]

    Read more

  • 27th ITER Council | Assembly moves ahead

    The Twenty-Seventh Meeting of the ITER Council took place by videoconference on 18 and 19 November 2020, chaired by LUO Delong from China. Representat [...]

    Read more

  • Fusion world | Translating JET into ITER

    With an inner wall made of beryllium and tungsten, the European tokamak JET is the only tokamak in the world to share the same material environment as ITER. Whe [...]

    Read more

  • Worksite | Major progress you don't see from the air

    There was a time when aerial pictures of the ITER worksite taken at six-month intervals showed spectacular change. Buildings and structures sprouted from previo [...]

    Read more

Of Interest

See archived entries

Testing plasma-facing components in St Petersburg

The first testing of plasma-facing components for ITER's outer divertor target full-scale prototype started at the Efremov Institute in St Petersburg, Russia in late October.

These crucially important and sophisticated heat-capturing elements will be in direct contact with the plasma—a first barrier that will withstand the main heat flux from plasma during operation. As the plasma temperature is to reach 100-150 million °C, and the expected heat load on the divertor surface up to 20 MW/m2, the components under test have challenging requirements to meet.

To conduct the tests in Russia, a special ITER Divertor Test Facility was assembled at the Efremov Institute as part of the Russian commitment for the ITER Project. Within the Facility, an 800 kW electron injector exposes the components to the same heat loads they will face inside the ITER vacuum vessel in the standard operational mode and allows the testing of their reliability.

A 800 kW electron injector exposes the components to the same heat loads - up to 20 MW/m2 - they will face inside the ITER vacuum vessel. (Click to view larger version...)
A 800 kW electron injector exposes the components to the same heat loads - up to 20 MW/m2 - they will face inside the ITER vacuum vessel.
The tests being carried out in Russia's northern capital are a vivid example of close international cooperation within the implementation of the ITER Project: the components were manufactured in Japan and shipped by our Japanese colleagues directly to St Petersburg for testing at the Russian facility. In compliance with the spirit of tight international collaboration, the works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization.
 
The first test results are expected in late November; several dozen test series will follow. The results will make it possible to adjust the manufacturing technology for these challenging plasma-facing components.

The works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization. (Click to view larger version...)
The works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization.


return to the latest published articles