Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum vessel | Sector #6 is leak tight

    The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours. Back in March 2020, as experts from the Korean Domestic Agency [...]

    Read more

  • Vacuum vessel | India completes in-wall shielding package

    The Indian Domestic Agency has completed the procurement of about 9,000 in-wall shielding blocks and accompanying support ribs, brackets and fasteners. The majo [...]

    Read more

  • Image of the week | Feeders for the coils

    One by one, whether large or small, the elements of the system that delivers electrical power, cryogenic fluids and instrumentation to the ITER magnets are arri [...]

    Read more

  • Busbar installation | "Power cords" thicker than train rails

    Connecting an electrical device to a power source requires an extension cord, generally made of stranded copper wire. Depending on the required current intensit [...]

    Read more

  • Manufacturing | The next sector in line

    Thanks to the experience acquired during the fabrication of the first production unit of the vacuum vessel, the Korean Domestic Agency and contractor Hyundai He [...]

    Read more

Of Interest

See archived entries

Testing plasma-facing components in St Petersburg

Alexander Petrov, ITER Russia

The first testing of plasma-facing components for ITER's outer divertor target full-scale prototype started at the Efremov Institute in St Petersburg, Russia in late October.

These crucially important and sophisticated heat-capturing elements will be in direct contact with the plasma—a first barrier that will withstand the main heat flux from plasma during operation. As the plasma temperature is to reach 100-150 million °C, and the expected heat load on the divertor surface up to 20 MW/m2, the components under test have challenging requirements to meet.

To conduct the tests in Russia, a special ITER Divertor Test Facility was assembled at the Efremov Institute as part of the Russian commitment for the ITER Project. Within the Facility, an 800 kW electron injector exposes the components to the same heat loads they will face inside the ITER vacuum vessel in the standard operational mode and allows the testing of their reliability.

A 800 kW electron injector exposes the components to the same heat loads - up to 20 MW/m2 - they will face inside the ITER vacuum vessel. (Click to view larger version...)
A 800 kW electron injector exposes the components to the same heat loads - up to 20 MW/m2 - they will face inside the ITER vacuum vessel.
The tests being carried out in Russia's northern capital are a vivid example of close international cooperation within the implementation of the ITER Project: the components were manufactured in Japan and shipped by our Japanese colleagues directly to St Petersburg for testing at the Russian facility. In compliance with the spirit of tight international collaboration, the works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization.
 
The first test results are expected in late November; several dozen test series will follow. The results will make it possible to adjust the manufacturing technology for these challenging plasma-facing components.

The works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization. (Click to view larger version...)
The works are being carried out in the presence of Russian and Japanese Domestic Agency specialists, as well as experts from the ITER Organization.


return to the latest published articles