Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The making of a ring coil—a photo story

    From one end to the other of the on-site manufacturing facility for poloidal field coils, the different production stations are now clearly delimited, with tool [...]

    Read more

  • An unexpected fusion spinoff: aircraft carrier catapult

    The US company General Atomics is fabricating the 'beating heart of ITER,' an electromagnet called the central solenoid that is so large and powerful, that its [...]

    Read more

  • First steps towards "energizing"

    It takes more than the flipping of a switch to connect the ITER site to the French national grid. The operation, called a 'first energizing,' is a complex, step [...]

    Read more

  • The bioshield rises

    The bioshield structure is rising at the heart of the Tokamak Building. The last plot of the B1 level was poured last week; about half of the first ground level [...]

    Read more

  • Barcelona Supercomputer Center and ITER strengthen ties

    In a Memorandum of Understanding signed on 12 January 2017, the ITER Organization and the Barcelona Supercomputing Center (BSC) in Spain have agreed 'to promote [...]

    Read more

Of Interest

See archived articles

Reshaping the landscape of neutrons

-Sabina Griffith

Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS (Click to view larger version...)
Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS
Neutrons, along with electrons and X-ray, allow us to see inside matter. Since the wavelength of neutrons is similar to the distance between atoms, they can provide images of structure on an atomic scale. Neutron scattering is therefore an important tool for the provision of structural information on the atomic scale and for the understanding of dynamical properties of solids and liquids.

Quite a number of neutron sources exist around the world, with the most recent newcomer to the club and world leader in the supply of neutrons being the Spallation Neutron Source (SNS) in the US. Now, a new project is about to change the "landscape of neutrons," as Juan Tomás Hernani reported in the most recent Inside ITER seminar last week. Hernani is the Secretary General for Innovation and Industry of the European Spallation Source (ESS) which is currently under development in southern Sweden. Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Metaphorically speaking: if researchers have been studying materials under candlelight so far, the neutrons at ESS will provide the brilliance of floodlight.
 
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape. (Click to view larger version...)
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape.
Set up as a joint project of 17 European nations, the ESS at present has reached the critical planning phase for the instruments and components. Construction will begin in 2013 in Lund and the first neutrons together with the initial seven instruments will be available in 2019.  The remaining instruments will be completed by 2025, when the facility shall be fully operational. The total costs for planning, construction and operation of ESS are estimated at EUR 1.48 billion.

Click here to download Juan Tomás Hernani's presentation.




return to the latest published articles