Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

Reshaping the landscape of neutrons

Sabina Griffith

Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS (Click to view larger version...)
Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS
Neutrons, along with electrons and X-ray, allow us to see inside matter. Since the wavelength of neutrons is similar to the distance between atoms, they can provide images of structure on an atomic scale. Neutron scattering is therefore an important tool for the provision of structural information on the atomic scale and for the understanding of dynamical properties of solids and liquids.

Quite a number of neutron sources exist around the world, with the most recent newcomer to the club and world leader in the supply of neutrons being the Spallation Neutron Source (SNS) in the US. Now, a new project is about to change the "landscape of neutrons," as Juan Tomás Hernani reported in the most recent Inside ITER seminar last week. Hernani is the Secretary General for Innovation and Industry of the European Spallation Source (ESS) which is currently under development in southern Sweden. Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Metaphorically speaking: if researchers have been studying materials under candlelight so far, the neutrons at ESS will provide the brilliance of floodlight.
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape. (Click to view larger version...)
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape.
Set up as a joint project of 17 European nations, the ESS at present has reached the critical planning phase for the instruments and components. Construction will begin in 2013 in Lund and the first neutrons together with the initial seven instruments will be available in 2019. The remaining instruments will be completed by 2025, when the facility shall be fully operational. The total costs for planning, construction and operation of ESS are estimated at EUR 1.48 billion.

Click here to download Juan Tomás Hernani's presentation.




return to the latest published articles