Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

Reshaping the landscape of neutrons

Sabina Griffith

Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS (Click to view larger version...)
Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Source: ESS
Neutrons, along with electrons and X-ray, allow us to see inside matter. Since the wavelength of neutrons is similar to the distance between atoms, they can provide images of structure on an atomic scale. Neutron scattering is therefore an important tool for the provision of structural information on the atomic scale and for the understanding of dynamical properties of solids and liquids.

Quite a number of neutron sources exist around the world, with the most recent newcomer to the club and world leader in the supply of neutrons being the Spallation Neutron Source (SNS) in the US. Now, a new project is about to change the "landscape of neutrons," as Juan Tomás Hernani reported in the most recent Inside ITER seminar last week. Hernani is the Secretary General for Innovation and Industry of the European Spallation Source (ESS) which is currently under development in southern Sweden. Thirty times more powerful than existing facilities and designed to operate in long pulses, the ESS will act as a kind of super microscope. Metaphorically speaking: if researchers have been studying materials under candlelight so far, the neutrons at ESS will provide the brilliance of floodlight.
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape. (Click to view larger version...)
Juan Thomás Hernani, ITER Deputy Director-General Carlos Alejaldre and Matti Tiirakari, Director for Administration at ESS, looking at the ITER landscape.
Set up as a joint project of 17 European nations, the ESS at present has reached the critical planning phase for the instruments and components. Construction will begin in 2013 in Lund and the first neutrons together with the initial seven instruments will be available in 2019. The remaining instruments will be completed by 2025, when the facility shall be fully operational. The total costs for planning, construction and operation of ESS are estimated at EUR 1.48 billion.

Click here to download Juan Tomás Hernani's presentation.




return to the latest published articles