Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Real-time collaboration delivers for fusion computing

    A key computing system for ITER is now being trialled at the European tokamak JET, following collaboration betweenteams at the UK's Culham Centre for Fusion Ene [...]

    Read more

  • The balance of power

    It comes as no surprise that the French railway operator SNCF is the largest consumer of electricity in the country—it takes a lot of megawatts to power 500 sup [...]

    Read more

  • "Dummy" winding takes shape

    As orange lights flash and machines softly hum, layer one of a 'dummy' pancake winding (the building block of a poloidal field coil) is taking shape on the wind [...]

    Read more

  • As big (and heavy) as a whale

    It was pouring when the two 35-metre-long quench tanks were delivered to the ITER site at 2:12 a.m. on Thursday 24 November. And it was still raining heavily on [...]

    Read more

  • A passage to India

    108 days, 10,200 kilometres, 16 countries, and only two flat tires. These are the remarkable statistics of a no-less-remarkable journey: a father and son who tr [...]

    Read more

Of Interest

See archived articles

Europe manufactures its first cryopump components

-European Domestic Agency, Fusion for Energy

An isometric view of the ITER Pre-Production Cryopump, that will serve as a spare for ITER's eight cryopumps. (Click to view larger version...)
An isometric view of the ITER Pre-Production Cryopump, that will serve as a spare for ITER's eight cryopumps.
The European Domestic Agency for ITER, Fusion for Energy, started the new year with the completion of an important milestone linked to Europe's contribution to ITER: the successful manufacturing of the cryopanels and thermal shields for the Pre-Production Cryopump (PPC).

The Pre-Production Cryopump will be the spare for ITER's eight cryopumps (two in the cryostat and six in the torus). The cryopumps will be constantly operational and will play a vital role in the production of the ultra-high vacuum inside the vacuum vessel. In a nutshell, these components will help attain optimum plasma performance.

After an intense period of research, development and design, Fusion for Energy was entrusted with the responsibility of manufacturing the components. In November 2012, a series of contracts were signed with four companies based in Germany and in France, as well as with the Karlsruhe Institute of Technology (KIT) for the manufacturing of the Pre-Production Cryopump.

Part of the Pre-Production Cryopump thermal shields that will protect the cryopanels from excessive thermal loads. (Click to view larger version...)
Part of the Pre-Production Cryopump thermal shields that will protect the cryopanels from excessive thermal loads.
The Pre-Production Cryopump and the rest of the torus cryopumps will operate with helium at 3.5 K (-269.5ºC). They consist of the cryopanels, which perform the pumping action, and thermal shields that protect the cryopanels from excessive thermal loads. The components were put through complex dimensional controls and ultra-high vacuum leak tests.

The cryopanels have already been delivered to KIT and the thermal shields to Research Instruments, a German company that will integrate the manufacturing activities. At KIT, the cryopanels will be sprayed with charcoal, which is necessary for the pumping of helium and hydrogen isotopes from the torus. Research Instruments, together with Alsyom/Seiv will play a pivotal role in the production of the rest of the cryopump components, assembly, as well as the final cold ultra-high vacuum leak tests for the Pre-Production Cryopump.

Read the full article here.



return to the latest published articles