Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Europe manufactures its first cryopump components

European Domestic Agency, Fusion for Energy

An isometric view of the ITER pre-production cryopump, that will serve as a spare for ITER's eight cryopumps. (Click to view larger version...)
An isometric view of the ITER pre-production cryopump, that will serve as a spare for ITER's eight cryopumps.
The European Domestic Agency for ITER, Fusion for Energy, started the new year with the completion of an important milestone linked to Europe's contribution to ITER: the successful manufacturing of the cryopanels and thermal shields for the pre-production cryopump (PPC).

The pre-production cryopump will be the spare for ITER's eight cryopumps (two in the cryostat and six in the torus). The cryopumps will be constantly operational and will play a vital role in the production of the ultra-high vacuum inside the vacuum vessel. In a nutshell, these components will help attain optimum plasma performance.

After an intense period of research, development and design, Fusion for Energy was entrusted with the responsibility of manufacturing the components. In November 2012, a series of contracts were signed with four companies based in Germany and in France, as well as with the Karlsruhe Institute of Technology (KIT) for the manufacturing of the pre-production cryopump.

Part of the pre-production cryopump thermal shields that will protect the cryopanels from excessive thermal loads. (Click to view larger version...)
Part of the pre-production cryopump thermal shields that will protect the cryopanels from excessive thermal loads.
The pre-production cryopump and the rest of the torus cryopumps will operate with helium at 3.5 K (-269.5ºC). They consist of the cryopanels, which perform the pumping action, and thermal shields that protect the cryopanels from excessive thermal loads. The components were put through complex dimensional controls and ultra-high vacuum leak tests.

The cryopanels have already been delivered to KIT and the thermal shields to Research Instruments, a German company that will integrate the manufacturing activities. At KIT, the cryopanels will be sprayed with charcoal, which is necessary for the pumping of helium and hydrogen isotopes from the torus. Research Instruments, together with Alsyom/Seiv will play a pivotal role in the production of the rest of the cryopump components, assembly, as well as the final cold ultra-high vacuum leak tests for the pre-production cryopump.

Read the full article here.



return to the latest published articles