Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • IAEA and ITER | Even closer cooperation

    Under Practical Arrangements signed in June, the International Atomic Energy Agency and the ITER Organization will be expanding and deepening a long history of [...]

    Read more

  • Neutral Beam Test Facility | High voltage component for MITICA

    Creating reliable high-energy neutral beams at ITER parameters, from a negative ion source, requires such a large technological leap that the components of the [...]

    Read more

  • 24th ITER Council | En route to First Plasma, 63% of the work is done

    The ITER Council has met for the twenty-fourth time since the signature of the ITER Agreement. Representatives from China, the European Union, India, Japan, Kor [...]

    Read more

  • Upper ports | A very international effort

    The 18 upper ports of the ITER vacuum vessel are procured by Russia, manufactured in Germany, and mounted (in part) on the vessel sectors by contractors in Ital [...]

    Read more

  • Paint job | One level done, five to go

    The job is done and the effect is spectacular. At the deepest basement level (B2) of the Tokamak Building, the floors, walls, and ceilings are now perfectly whi [...]

    Read more

Of Interest

See archived entries

Europe manufactures its first cryopump components

European Domestic Agency, Fusion for Energy

An isometric view of the ITER pre-production cryopump, that will serve as a spare for ITER's eight cryopumps. (Click to view larger version...)
An isometric view of the ITER pre-production cryopump, that will serve as a spare for ITER's eight cryopumps.
The European Domestic Agency for ITER, Fusion for Energy, started the new year with the completion of an important milestone linked to Europe's contribution to ITER: the successful manufacturing of the cryopanels and thermal shields for the pre-production cryopump (PPC).

The pre-production cryopump will be the spare for ITER's eight cryopumps (two in the cryostat and six in the torus). The cryopumps will be constantly operational and will play a vital role in the production of the ultra-high vacuum inside the vacuum vessel. In a nutshell, these components will help attain optimum plasma performance.

After an intense period of research, development and design, Fusion for Energy was entrusted with the responsibility of manufacturing the components. In November 2012, a series of contracts were signed with four companies based in Germany and in France, as well as with the Karlsruhe Institute of Technology (KIT) for the manufacturing of the pre-production cryopump.

Part of the pre-production cryopump thermal shields that will protect the cryopanels from excessive thermal loads. (Click to view larger version...)
Part of the pre-production cryopump thermal shields that will protect the cryopanels from excessive thermal loads.
The pre-production cryopump and the rest of the torus cryopumps will operate with helium at 3.5 K (-269.5ºC). They consist of the cryopanels, which perform the pumping action, and thermal shields that protect the cryopanels from excessive thermal loads. The components were put through complex dimensional controls and ultra-high vacuum leak tests.

The cryopanels have already been delivered to KIT and the thermal shields to Research Instruments, a German company that will integrate the manufacturing activities. At KIT, the cryopanels will be sprayed with charcoal, which is necessary for the pumping of helium and hydrogen isotopes from the torus. Research Instruments, together with Alsyom/Seiv will play a pivotal role in the production of the rest of the cryopump components, assembly, as well as the final cold ultra-high vacuum leak tests for the pre-production cryopump.

Read the full article here.



return to the latest published articles