Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Fusion machines | The second-hand market

    Whatever their size, fusion devices are fine pieces of technology that are complex to design and expensive to build. As research progresses and experimental pro [...]

    Read more

  • Manufacturing in China | A set of clamps to resist all loads

    China is providing an extensive array of supports and clamps for ITER's superconducting magnet systems—in all, more than 1,600 tonnes of equipment. On 9 June, t [...]

    Read more

  • Power electronics | Coaxial cables arrive from Russia

    Thirty-eight reels of cable on 13 specially equipped trailers ... the recent convoy of electrotechnical equipment shipped by the Russian Domestic Agency was the [...]

    Read more

  • Conference|Lions and mammoths and cave bears—oh my!

    Separated by less than 200 kilometres in space—but by 36,000 years in time—the ITER Tokamak and the Chauvet Cave may seem to have little in common. But to scien [...]

    Read more

  • Neutral beam test facility | First ITER test bed enters operation

    For all those who had contributed to designing and building the world's largest negative ion source, it was a deeply symbolic moment. ITER Director-General Bern [...]

    Read more

Of Interest

See archived articles

Closing the tritium cycle for a cleaner, greener JET

Nick Holloway, Culham Centre for Fusion Energy

The new water detritiation system, which will come on line in time for JET's new deuterium-tritium experiments, will separate tritium from water and allow the tritium fuel to be recuperated and reused. (Click to view larger version...)
The new water detritiation system, which will come on line in time for JET's new deuterium-tritium experiments, will separate tritium from water and allow the tritium fuel to be recuperated and reused.
Improvements underway at Europe's largest operating fusion research facility, JET, will reduce environmental impact and make a big saving on the site's waste management costs.

A new water detritiation system has been designed to recycle tritium used in fusion experiments, reducing the amount of radioactive waste that has to be sent to off-site disposal facilities.

Tritium is one of the two fuels expected to be used in commercial tokamak reactors and, as such, is a vital ingredient in fusion research, particularly at JET—the only device currently capable of using it.

The Culham Centre for Fusion Energy (CCFE) holds small amounts of tritium that are being added to as the research centre gears up for JET's next run of deuterium-tritium fusion experiments. As a radioactive substance, it requires extremely careful handling before, during and after operations. Any material that comes into contact with tritium has the potential to become tritiated, resulting in the possible generation of radioactive waste. Up until now, with no suitable facilities on the Culham site, dealing with that material has involved transporting it to repositories or processing plants that can handle this waste.

That is set to change as the water detriation system comes into operation.

Read the full article on the CCFE website



return to the latest published articles