Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Image of the week | More cladding and a new message

    As the October sun sets on the ITER worksite, the cladding of the neutral beam power buildings takes on a golden hue. One after the other, each of the scientifi [...]

    Read more

  • Cryodistribution | Cold boxes 20 years in the making

    Twenty years—that is how long it took to design, manufacture and deliver the cold valve boxes that regulate the flow of cryogens to the tokamak's vacuum system. [...]

    Read more

  • Open Doors Day | Face to face with ITER immensity

    In October 2011, when ITER organized its first 'Open Doors Day,' there was little to show and much to leave to the public's imagination: the Poloidal Field [...]

    Read more

  • Fusion | Turning neutrons into electricity

    How will the power generated by nuclear fusion reactions be converted into electricity? That is not a question that ITER has been designed to answer explicitly, [...]

    Read more

  • Fusion world | JET completes a storied 40-year run

    In its final deuterium-tritium experimental campaign, Europe's JET tokamak device demonstrated plasma scenarios that are expected on ITER and future fusion powe [...]

    Read more

Of Interest

See archived entries

The jellyfish that got trapped in a fusion machine

The technique used in the video clip lets fusion researchers view phenomena that cause the plasma's edge to wobble but are not visible with the naked eye—potentially very useful in detecting ''unseen'' plasma instabilities that reduce the confinement of energy in a tokamak. (Click to view larger version...)
The technique used in the video clip lets fusion researchers view phenomena that cause the plasma's edge to wobble but are not visible with the naked eye—potentially very useful in detecting ''unseen'' plasma instabilities that reduce the confinement of energy in a tokamak.
It looks like a jellyfish is trapped inside of a fusion machine. But nature lovers can relax: the video at right is a real—if unusual—record of a plasma experiment inside the spherical MAST tokamak at the Culham Centre for Fusion Energy (CCFE).

In the image on the right side, a MAST plasma is processed with a magnification method called Eulerian Video Magnification. (At left, a normal MAST plasma without the processing applied, for comparison.)

This technique takes a static image, detects small changes in intensity of the light (such as small movements in the images) and amplifies them. It is well suited to footage of tokamak plasmas and has already been used to good effect on MAST.

The "jellyfish" plasma in this clip, produced by CCFE's Thomas O'Gorman, lets fusion researchers view phenomena (a 2,1 tearing mode in this case) which cause the plasma's edge to wobble but are not visible with the naked eye. This is potentially very useful in detecting "unseen" plasma instabilities that reduce the confinement of energy in a tokamak.

So, if you'll pardon the pun, the much-maligned jellyfish could help take the "sting" out of plasma instabilities and propel fusion towards the electricity grid...

View the video on CCFE's website


return to the latest published articles