Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

The jellyfish that got trapped in a fusion machine

Culham Centre for Fusion Energy

The technique used in the video clip lets fusion researchers view phenomena that cause the plasma's edge to wobble but are not visible with the naked eye—potentially very useful in detecting ''unseen'' plasma instabilities that reduce the confinement of energy in a tokamak. (Click to view larger version...)
The technique used in the video clip lets fusion researchers view phenomena that cause the plasma's edge to wobble but are not visible with the naked eye—potentially very useful in detecting ''unseen'' plasma instabilities that reduce the confinement of energy in a tokamak.
It looks like a jellyfish is trapped inside of a fusion machine. But nature lovers can relax: the video at right is a real—if unusual—record of a plasma experiment inside the spherical MAST tokamak at the Culham Centre for Fusion Energy (CCFE).

In the image on the right side, a MAST plasma is processed with a magnification method called Eulerian Video Magnification. (At left, a normal MAST plasma without the processing applied, for comparison.)

This technique takes a static image, detects small changes in intensity of the light (such as small movements in the images) and amplifies them. It is well suited to footage of tokamak plasmas and has already been used to good effect on MAST.

The "jellyfish" plasma in this clip, produced by CCFE's Thomas O'Gorman, lets fusion researchers view phenomena (a 2,1 tearing mode in this case) which cause the plasma's edge to wobble but are not visible with the naked eye. This is potentially very useful in detecting "unseen" plasma instabilities that reduce the confinement of energy in a tokamak.

So, if you'll pardon the pun, the much-maligned jellyfish could help take the "sting" out of plasma instabilities and propel fusion towards the electricity grid...

View the video on CCFE's website


return to the latest published articles