Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Mobilizing for long-pulse operation

    One of the key operational challenges in the development of fusion energy is the achievement, simultaneously, of high fusion performance and long-pulse operatio [...]

    Read more

  • ITER science | What is burning plasma?

    The dream of fusion power depends first and foremost on a self-sustaining fusion reaction, with most of the heating power needed coming from within the reaction [...]

    Read more

  • Plasma modelling | New SOLPS-ITER code version launched

    The widely used SOLPS-ITER tool for plasma edge modelling has evolved since its launch in 2015. At recent workshop at KU Leuven in Belgium, European specialists [...]

    Read more

  • Open Doors Day | Accessing the very heart of ITER

    Small or tall, knowledgeable or neophyte, from near or far ... the 600 people who took part in ITER's latest Open Doors Day all departed with the sense that som [...]

    Read more

  • Local | A question and answer session

    Nuclear safety policy in France requires that a local information commission (Commission locale d'information, CLI) be established every time a nuclear installa [...]

    Read more

Of Interest

See archived entries

The cold factory

In order to maintain 10,000 tonnes of magnets at superconducting temperature, to cool the thermal shield and to feed the cryopumps, ITER will need to circulate huge quantities of cooling fluids.

 (Click to view larger version...)
As a consequence, the ITER cryoplant (worksite pictured) will be deliver 75 kW of combined cooling power.

The soccer-field-size installation will comprise three identical plants to store and circulate liquid helium (at a temperature of 4 K or minus 269 °C) throughout the installation.

Helium is not the only ultra-cold fluid that the cryoplant will produce. Liquid nitrogen, at a temperature of minus 196 °C, will be used as a "pre-cooler" in the liquid helium plants.

 (Click to view larger version...)
On the site of the cryoplant, not far from the Poloidal Field Coils Winding Facility, the foundations are in place. Work is now focused on the construction of the columns that will support the cranes for the installation's maintenance and on the slabs that will support the heavy megawatt-class screw compressors and high-speed turbines.

The building structure should be delivered in April 2017.


return to the latest published articles