Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Back to the underground cathedral

In the last issue of Newsline we shared a picture of the Tokamak's subterranean world, showing the cavernous space that exists between the lower basement slab (B2) and the next-level slab (B1) of the Tokamak Complex.

"What is today a vast open space around the Tokamak assembly arena," the article said, "will one day be occupied by the dense piping of the cooling water system primary circuit."



Click on the image above to watch the animation.

Miikka Kotamaki of the ITER Design Integration Division has created a GIF image that brings home the reality of those words, by showing how the space will progressively fill up with pipes, cables, feeders and busbars.

The sequence is as follows: first the piping for building services such as compressed air, demineralized water, liquid and gaseous nitrogen, helium, fire protection, and drainage is set into place (in blue); followed by cable trays (light grey), cryolines (deep blue), and cooling water lines (not visible as they are located behind and above the camera's viewpoint).

Next come additional cable trays (light grey), massive magnet feeders and feeder boxes (yellow) and busbars (gold). Other ancillary equipment such as fast discharge units is introduced and connected to the feeder boxes.

The last step in transforming the subterranean cathedral into a forest of piping and equipment is the installation of vacuum pipes and pumps and their connection to the feeder boxes (light blue).

German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst) (Click to view larger version...)
German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst)
While Miikka was busy creating his animation, a German artist—photographer Christian Luenig, whose work on ITER we presented in June 2015—was experimenting with a different approach: the drypoint drawing, which perfectly expresses the mineral atmosphere of ITER's underground cathedral.



return to the latest published articles