Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Technology | The many wonders of ITER diagnostics

    The eyes and ears of virtually all plant functions, ITER diagnostic sensors and accompanying systems will play an essential role at ITER. They will keep the rea [...]

    Read more

  • Outreach | Industry really can be "extraordinaire"

    'Great things are done by a series of small things brought together.' This quote, attributed to the Dutch painter Vincent Van Gogh, could have been the perfect [...]

    Read more

  • Tokamak Building | Civil works completed

    The olive tree that stood for a few days at the top of the Tokamak Building marked the completion of a five-year effort by Europe and its main contractor VFR to [...]

    Read more

  • Assembly Hall | Another massive handling tool

    Inside of the Assembly Hall, some of ITER's heaviest components will have to be raised ever so carefully from their horizontal delivery positions to vertical. T [...]

    Read more

  • Image of the week | Time to celebrate

    It is traditional, in the world of construction, to celebrate the completion of a house or building by placing a leafy branch on its roof or topmost beam. The p [...]

    Read more

Of Interest

See archived entries

Back to the underground cathedral

In the last issue of Newsline we shared a picture of the Tokamak's subterranean world, showing the cavernous space that exists between the lower basement slab (B2) and the next-level slab (B1) of the Tokamak Complex.

"What is today a vast open space around the Tokamak assembly arena," the article said, "will one day be occupied by the dense piping of the cooling water system primary circuit."



Click on the image above to watch the animation.

Miikka Kotamaki of the ITER Design Integration Division has created a GIF image that brings home the reality of those words, by showing how the space will progressively fill up with pipes, cables, feeders and busbars.

The sequence is as follows: first the piping for building services such as compressed air, demineralized water, liquid and gaseous nitrogen, helium, fire protection, and drainage is set into place (in blue); followed by cable trays (light grey), cryolines (deep blue), and cooling water lines (not visible as they are located behind and above the camera's viewpoint).

Next come additional cable trays (light grey), massive magnet feeders and feeder boxes (yellow) and busbars (gold). Other ancillary equipment such as fast discharge units is introduced and connected to the feeder boxes.

The last step in transforming the subterranean cathedral into a forest of piping and equipment is the installation of vacuum pipes and pumps and their connection to the feeder boxes (light blue).

German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst) (Click to view larger version...)
German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst)
While Miikka was busy creating his animation, a German artist—photographer Christian Luenig, whose work on ITER we presented in June 2015—was experimenting with a different approach: the drypoint drawing, which perfectly expresses the mineral atmosphere of ITER's underground cathedral.



return to the latest published articles