Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER Council: project metrics confirm performance

    The governing body of the ITER Organization, the ITER Council, met for the twenty-first time on 15 and 16 November 2017 under the chairmanship of Won Namkung (K [...]

    Read more

  • COP 23 | Placing ITER on the global scene

    On the western bank of theRhine and not far from the seat of the UN Climate Change Secretariat, world leaders are discussing how to push ahead for international [...]

    Read more

  • Japan's MEXT Minister | Seeing is believing

    On 4 November, ITER received Yoshimasa Hayashi, the Japanese Minister of MEXT—the Ministry of Education, Culture, Sports, Science and Technology with oversight [...]

    Read more

  • Architect Engineer | ENGAGE receives prestigious award

    Since 2006, the French 'Grand Prix de l'Ingénierie' has recognized engineering projects and/or teams that are remarkable in terms of scope, innovation, complexi [...]

    Read more

  • Sub-assembly tools | One foot inside

    The twin Korean giants already have a foot inside the Assembly Hall—literally. The foot—or 'bottom inboard column' in ITER parlance—is a 4.4-metre-long steel [...]

    Read more

Of Interest

See archived articles

Back to the underground cathedral

In the last issue of Newsline we shared a picture of the Tokamak's subterranean world, showing the cavernous space that exists between the lower basement slab (B2) and the next-level slab (B1) of the Tokamak Complex.

"What is today a vast open space around the Tokamak assembly arena," the article said, "will one day be occupied by the dense piping of the cooling water system primary circuit."



Click on the image above to watch the animation.

Miikka Kotamaki of the ITER Design Integration Division has created a GIF image that brings home the reality of those words, by showing how the space will progressively fill up with pipes, cables, feeders and busbars.

The sequence is as follows: first the piping for building services such as compressed air, demineralized water, liquid and gaseous nitrogen, helium, fire protection, and drainage is set into place (in blue); followed by cable trays (light grey), cryolines (deep blue), and cooling water lines (not visible as they are located behind and above the camera's viewpoint).

Next come additional cable trays (light grey), massive magnet feeders and feeder boxes (yellow) and busbars (gold). Other ancillary equipment such as fast discharge units is introduced and connected to the feeder boxes.

The last step in transforming the subterranean cathedral into a forest of piping and equipment is the installation of vacuum pipes and pumps and their connection to the feeder boxes (light blue).

German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst) (Click to view larger version...)
German photographer Christian Luenig experimented with a different approach—a black and white rendition reminiscent of drypoint drawings. (Christian Lünig/VG Bild und Kunst)
While Miikka was busy creating his animation, a German artist—photographer Christian Luenig, whose work on ITER we presented in June 2015—was experimenting with a different approach: the drypoint drawing, which perfectly expresses the mineral atmosphere of ITER's underground cathedral.



return to the latest published articles