Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

US completes toroidal field deliveries for ITER

The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal field coil winding line at ASG in La Spezia, Italy.

A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER (Click to view larger version...)
A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER
All certificates of acceptance have been signed for the nine lengths of conductor, totalling over 7,000 metres. The US Domestic Agency, managed by Oak Ridge National Laboratory, has now completed its contribution of 8 percent of the toroidal field coil conductor ITER requires; the rest of the conductor has been supplied by other ITER Members.

Key industrial partners for this US procurement include: Luvata Waterbury (Connecticut) and Oxford Superconducting Technologies (New Jersey) for strand production; New England Wire Technologies (New Hampshire) for cabling; and High Performance Magnetics (Florida) and Criotec (Chivasso, Italy) for jacketing and integration. At the height of fabrication, US vendors Luvata and Oxford Superconducting Technologies were producing over five metric tons of superconducting strand per month.

The ITER facility will use approximately 80,000 km of low-temperature, helium-cooled superconducting wire to generate the immense toroidal magnetic fields needed to confine the 150-million-degree-Celsius plasma inside the ITER Tokamak. Eighteen toroidal field magnets, weighing more than 6,500 tonnes, will have a total magnetic energy of 41 gigajoules and a maximum magnetic field of 11.8 tesla.

As a partner in ITER, the US is providing hardware for multiple ITER systems. The US project will complete its next system contribution—components for the steady-state electrical network—later in 2017. Deliveries of toroidal field conductor from the US began in 2015.


return to the latest published articles