Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Challenges | Managing risk in a first-of-a-kind project

    The classic approach to project management is to group risks into three separate categories. The first consists of known risks, the second of unknown risks, and [...]

    Read more

  • Steve Cowley | Projecting into the coming decades

    Steven Cowley, who now heads the Princeton Plasma Physics Laboratory (PPPL), gave a seminar last week at CEA-Cadarache and he had some good news regarding the s [...]

    Read more

  • Outreach | What vacuum does to marshmallows

    Every year in France, science is "à la fête" for two consecutive weekends in October. Free events and demonstrations—tailored particularly to school-a [...]

    Read more

  • Physics | 11th ITER International School announced

    The 11th ITER International School will be held from 20 to 24 July 2020, hosted by Aix-Marseille University in Aix-en-Provence, France. The subject of this year [...]

    Read more

  • Image of the week | An anniversary in blue, white and red

    ITER neighbour and close partner in fusion research, the CEA-Cadarache nuclear research centre, was established in October 1959. This week, it celebrated the 60 [...]

    Read more

Of Interest

See archived entries

US completes toroidal field deliveries for ITER

The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal field coil winding line at ASG in La Spezia, Italy.

A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER (Click to view larger version...)
A drawing of single toroidal field coil shows the scale of the ITER Tokamak. Right: The compacted cable of superconducting strand is visible around the helium cooling channel in the middle of the completed conductor. Source: US ITER
All certificates of acceptance have been signed for the nine lengths of conductor, totalling over 7,000 metres. The US Domestic Agency, managed by Oak Ridge National Laboratory, has now completed its contribution of 8 percent of the toroidal field coil conductor ITER requires; the rest of the conductor has been supplied by other ITER Members.

Key industrial partners for this US procurement include: Luvata Waterbury (Connecticut) and Oxford Superconducting Technologies (New Jersey) for strand production; New England Wire Technologies (New Hampshire) for cabling; and High Performance Magnetics (Florida) and Criotec (Chivasso, Italy) for jacketing and integration. At the height of fabrication, US vendors Luvata and Oxford Superconducting Technologies were producing over five metric tons of superconducting strand per month.

The ITER facility will use approximately 80,000 km of low-temperature, helium-cooled superconducting wire to generate the immense toroidal magnetic fields needed to confine the 150-million-degree-Celsius plasma inside the ITER Tokamak. Eighteen toroidal field magnets, weighing more than 6,500 tonnes, will have a total magnetic energy of 41 gigajoules and a maximum magnetic field of 11.8 tesla.

As a partner in ITER, the US is providing hardware for multiple ITER systems. The US project will complete its next system contribution—components for the steady-state electrical network—later in 2017. Deliveries of toroidal field conductor from the US began in 2015.


return to the latest published articles