Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | Filled from floor to ceiling

    The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industr [...]

    Read more

  • Cryostat | Adjusting, welding, testing ...

    The assembly of the ITER cryostat—the stainless steel "thermos" that insulates the ultra-cold superconducting magnets from the environment—is progress [...]

    Read more

  • Tokamak Building | Full steam ahead

    In this central arena of the construction site, construction teams are active three shifts a day—two full work shifts and a third, at night, dedicated to moving [...]

    Read more

  • Poloidal field coils | Turning tables and hot resin

    One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, imp [...]

    Read more

  • Assembly Hall | One giant standing

    Two identical handling tools in the Assembly Hall will play a critical role in preparing ITER's nine vacuum vessel sectors for their final journey: transport by [...]

    Read more

Of Interest

See archived entries

Project management

The elephant must be sliced

Kirsten Haupt

Any way you cut it, ITER is fantastically complex. Whether you're counting components or the lines in the machine assembly schedule, or taking a closer look at the project's vast procurement sharing scheme ... complexity needs to be managed in ITER. Hans-Henrich Altfeld, head of the Project Control Office, tells us how it's done.

ITER is complexity to be managed and the best way to do it is by ''slicing the elephant,'' explains Hans-Henrich Altfeld, head of the ITER Project Control Office. (Click to view larger version...)
ITER is complexity to be managed and the best way to do it is by ''slicing the elephant,'' explains Hans-Henrich Altfeld, head of the ITER Project Control Office.
From a lay person's view, what makes the ITER Project stand out is the sheer scale of the undertaking in terms of size and budget, its level of scientific and technological innovation and, not least, its relevance to critical global issues.


A project manager looks at it differently. With costs of EUR 20 billion, millions of parts, supply chains spanning the entire globe and a multi-cultural workforce coming from 35 different countries, ITER is complexity to be managed. Altfeld has experience in the domain, having worked as a senior project manager for Airbus and in the automotive industry. His experience in mega projects is serving him now.

"Whereas at Airbus, 79,000 design drawings were needed for the development of the A380, at ITER we stand at 250,000 design drawings."

Why is it important to address complexity? "What we ultimately want to achieve is control over the project," Altfeld explains. "We do this by reducing its complexity. This will give us better control of the project, which is a precondition for success."

 (Click to view larger version...)
Hans-Henrich Altfeld has thirty years of international experience in program and project management. He worked for over twelve years at Airbus and four years at Johnson Controls Automotive Seating. He has led large production plants, managed various business transformation projects and been responsible for the building of entire factories.

Since January 2017 he heads the Project Control Office. 

Recognizing complexity is the first step to addressing and ultimately reducing it. But, how is this done with a project of this magnitude? "You have to slice the elephant," says Altfeld. Slicing the elephant? "You essentially cut the project into smaller units. This allows you to address the project in incremental steps that you manage individually."


At ITER, the "slicing of the elephant" follows the contour lines of other highly complex projects. "The ITER Project is not particularly unique in this sense," says Altfeld. It includes breaking down the entire project into systems, sub-systems and components; breaking down all required work into work packages; establishing and cascading requirements along with dedicated verification and validation plans; establishing a schedule governance which incorporates the activities of the Domestic Agencies, and developing a coordinate system for the ITER site.

"Slicing the elephant" requires tight management and strict control of the interfaces and interdependencies between the separate "slices."

"There is still room for improvement in this area," says Altfeld. "For ITER—as a first-of-a-kind experiment—it was impossible to identify all interfaces and interdependencies right from the beginning. It is learning by doing."

One example of the need for stricter interface control surfaced at a recent workshop. Considering the number of components the ITER machine will consist of and the extended time frame for construction, clear and understandable coding of components will ensure their correct placement in the machine. In previous years, not all components were coded early in the process, during the design phase. Now, these parts need to be coded retroactively—a situation that new procedures will correct in the future.

Another lesson learned from other mega projects is the importance of identifying and prioritizing risks and opportunities. These can be of a technical nature, or relating more to the project control issues of schedule or cost. New risk and opportunity management practices are helping the project to anticipate challenges in critical-path areas such as Tokamak Building construction and vacuum vessel manufacturing.

"Identifying the potential risks to delivery allows the project to develop and implement response actions," concludes Altfeld. "In the same way, it is of utmost importance to 'hunt' for opportunities—to proceed more quickly or optimize assembly sequences, for example—to make sure they can be cashed in on."



return to the latest published articles