Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

Gyrotrons

In Russia, that makes two

Alexander Petrov, ITER Russia

In mid-May, factory acceptance tests were successfully carried out on the second gyrotron of the Russian procurement program by specialists at the Institute of Applied Physics and GYCOM Ltd.
 
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd. (Click to view larger version...)
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd.
Twenty-four energy-producing devices called gyrotrons will operate on ITER as part of the machine's electron cyclotron resonance heating system. These powerful sources of microwave radiation are tasked with a number of important missions: pre-ionization ("starting" the plasma), plasma heating and current drive, and the stabilization of local instabilities.

The first gyrotron was developed at the Institute of Applied Physics (Russian Academy of Sciences) back in 1964, generating 6W at 10GHz for continuous operation. Since then, scientists around the world have steadily increased gyrotron output power and, today, ITER needs are driving the program.

The tests conducted on the second gyrotron manufactured in Russia demonstrated full compliance with ITER Organization technical requirements (1 MW power at the required 170 GHz in continuous mode).


return to the latest published articles