Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neutral beam test facility | First ITER test bed enters operation

    For all those who had contributed to designing and building the world's largest negative ion source, it was a deeply symbolic moment. ITER Director-General Bern [...]

    Read more

  • Fusion machines | Searching for the perfect shape

    The perfect magnetic trap doesn't exist. Over time plasma physicists have experimented with different types of cylinders, magnetic mirrors and circular or helic [...]

    Read more

  • ITER Robots: pre-teens can too!

    Made-from-scratch movers and carriers were again on display near ITER, as the younger set took up the ITER Robots challenge. From two participating school [...]

    Read more

  • Supporting crown | A midnight pour

    It is close to midnight in the brightly lit basement of the ITER bioshield and, tonight, the first plot of the tokamak 'crown' is to be poured. The operation is [...]

    Read more

  • Prototype | The hottest stuff in ITER

    The heat flux sustained by the targets of the ITER divertor will be higher still—by ten times—than that of a space vessel re-entering Earth's atmosphere. Meticu [...]

    Read more

Of Interest

See archived articles

Gyrotrons

In Russia, that makes two

Alexander Petrov, ITER Russia

In mid-May, factory acceptance tests were successfully carried out on the second gyrotron of the Russian procurement program by specialists at the Institute of Applied Physics and GYCOM Ltd.
 
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd. (Click to view larger version...)
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd.
Twenty-four energy-producing devices called gyrotrons will operate on ITER as part of the machine's electron cyclotron resonance heating system. These powerful sources of microwave radiation are tasked with a number of important missions: pre-ionization ("starting" the plasma), plasma heating and current drive, and the stabilization of local instabilities.

The first gyrotron was developed at the Institute of Applied Physics (Russian Academy of Sciences) back in 1964, generating 6W at 10GHz for continuous operation. Since then, scientists around the world have steadily increased gyrotron output power and, today, ITER needs are driving the program.

The tests conducted on the second gyrotron manufactured in Russia demonstrated full compliance with ITER Organization technical requirements (1 MW power at the required 170 GHz in continuous mode).


return to the latest published articles