Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Crane operator | A cabin in the sky

    There are times, at dusk, when the ITER construction platform resembles an airport, with roads and buildings illuminated by yellow and white lights. From their [...]

    Read more

  • Assembly | A colossal task made manageable

    For the execution of work during the next project phase—machine and plant assembly up to First Plasma—the ITER Organization has chosen a contractual approach th [...]

    Read more

  • Neutral Beam Test Facility | A new agreement for a new era

    The ITER Organization and the Italian consortium Consorzio RFX* have signed a new agreement governing the construction and operation of the ITER Neutral Beam Te [...]

    Read more

  • Load tests | Heavyweight champion

    The Assembly Hall, with its two giant tools towering 20 metres above ground, is one of the most spectacular locations on the ITER site. When a dummy load weighi [...]

    Read more

  • Fusion's new pioneers | How to go fast enough to make a difference

    Last month in New York, the Stellar Energy Foundation and the Fusion Industry Association co-hosted an invitation-only workshop: 'Roadmap to the Fusion Energy E [...]

    Read more

Of Interest

See archived entries

Review of ITER's upper port plugs

Spencer Pitcher, ITER Diagnostic Physicist

Location of diagnostic port plugs on ITER. (Click to view larger version...)
Location of diagnostic port plugs on ITER.
One key aspect of the research program of ITER is the diagnosis of the plasma and the first wall, e.g., the plasma temperature, its density, its radiative properties, its first-wall resilience. For this purpose, a large number of diagnostics peer into the ITER vacuum vessel from many different vantage points.

The focus of the design review being held next week here in Cadarache is the generic location known as the upper port plugs. The diagnostic generic upper port plug (GUPP) design is meant to be common to all upper port-based diagnostic systems. It provides a common platform, or support/container, for a variety of diagnostics. In addition, the port plug structure must contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bakeout. The port plug must withstand disruption forces, thermal stresses and seismic events.

The design of the GUPP represents the culmination of two years of collaborative work involving the ITER Organization, most of the Domestic Agencies—including a leading role by the US-DA (Princeton Plasma Physics Lab)—and several industrial contractors.


return to the latest published articles