Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neighbours | In goes the antenna

    Just a short distance from the ITER site, the Institute for Magnetic Fusion Research (IRFM) is modifying the Tore Supra plasma facility which, once transformed, [...]

    Read more

  • Remote handling | Off-site test facility for design evaluation

    Through a technical collaboration established between the ITER Organization and the UK Atomic Energy Authority (UKAEA) in 2017, the UKAEA's centre for Remote Ap [...]

    Read more

  • Poloidal field coils | A tailor-made ring

    They work like tailors, carefully taking measurements and cutting immaculate fabric with large pairs of scissors. But they're not making a white three-piece sui [...]

    Read more

  • Fusion world | Record results at KSTAR

    Experiments in the Korean tokamakKSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with in [...]

    Read more

  • JT-60 SA| Cryostat ready for Europe-Japan tokamak

    The cryostat vessel body of the JT-60SA tokamakhas been successfully manufactured and pre-assembled at a factory in Spain, and will soon be transferred to the J [...]

    Read more

Of Interest

See archived articles

Review of ITER's upper port plugs

Spencer Pitcher, ITER Diagnostic Physicist

Location of diagnostic port plugs on ITER. (Click to view larger version...)
Location of diagnostic port plugs on ITER.
One key aspect of the research program of ITER is the diagnosis of the plasma and the first wall, e.g., the plasma temperature, its density, its radiative properties, its first-wall resilience. For this purpose, a large number of diagnostics peer into the ITER vacuum vessel from many different vantage points.

The focus of the design review being held next week here in Cadarache is the generic location known as the upper port plugs. The diagnostic generic upper port plug (GUPP) design is meant to be common to all upper port-based diagnostic systems. It provides a common platform, or support/container, for a variety of diagnostics. In addition, the port plug structure must contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bakeout. The port plug must withstand disruption forces, thermal stresses and seismic events.

The design of the GUPP represents the culmination of two years of collaborative work involving the ITER Organization, most of the Domestic Agencies—including a leading role by the US-DA (Princeton Plasma Physics Lab)—and several industrial contractors.


return to the latest published articles