Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

Review of ITER's upper port plugs

-Spencer Pitcher, ITER Diagnostic Physicist

Location of diagnostic port plugs on ITER. (Click to view larger version...)
Location of diagnostic port plugs on ITER.
One key aspect of the research program of ITER is the diagnosis of the plasma and the first wall, e.g., the plasma temperature, its density, its radiative properties, its first-wall resilience. For this purpose, a large number of diagnostics peer into the ITER vacuum vessel from many different vantage points.

The focus of the design review being held next week here in Cadarache is the generic location known as the upper port plugs. The diagnostic generic upper port plug (GUPP) design is meant to be common to all upper port-based diagnostic systems. It provides a common platform, or support/container, for a variety of diagnostics. In addition, the port plug structure must contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bakeout. The port plug must withstand disruption forces, thermal stresses and seismic events.

The design of the GUPP represents the culmination of two years of collaborative work involving the ITER Organization, most of the Domestic Agencies—including a leading role by the US-DA (Princeton Plasma Physics Lab)—and several industrial contractors.


return to the latest published articles