Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Tokamak assembly | Extra support from below

    Underneath the concrete slab that supports the Tokamak Complex is a vast, dimly lit space whose only features are squat, pillar-like structures called 'plinths. [...]

    Read more

  • Vacuum standards and quality | Spreading the word

    As part of a continuing commitment to improve quality culture both at the ITER Organization and at the Domestic Agencies, the Vacuum Delivery & Installation [...]

    Read more

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

Of Interest

See archived entries

Poloidal field coils

Winding activities end in Russia

Specialists of the Sredne-Nevsky Shipyard and the Efremov Institute in Saint Petersburg have completed the eight double pancake windings required for poloidal field coil #1. After the vacuum pressure impregnation of each double pancake, the team will start assembling the coil.

Shown stacked, the first five double pancakes have become hardened assemblies after the application of epoxy resin in a procedure known as vacuum pressure impregnation, or VPI. (Click to view larger version...)
Shown stacked, the first five double pancakes have become hardened assemblies after the application of epoxy resin in a procedure known as vacuum pressure impregnation, or VPI.
Under the responsibility of the Russian Domestic Agency, the fabrication of poloidal field coil #1 (PF1)—the smallest of ITER's six poloidal field coils—is progressing. Eight double pancakes made from coiled layers of niobium-titanium conductor have come off the fabrication line and six have undergone vacuum pressure impregnation—the phase during which epoxy resin hardens the insulation materials wrapped around each conductor turn and creates a rigid assembly. The impregnated double pancakes will be stacked and joined electrically to form a final nine-metre-in diameter magnet coil weighing close to 200 tonnes.

The mould is coming off the sixth double pancake after vacuum pressure impregnation. The nine-metre-in-diameter pancakes will be stacked and joined electrically. (Click to view larger version...)
The mould is coming off the sixth double pancake after vacuum pressure impregnation. The nine-metre-in-diameter pancakes will be stacked and joined electrically.
Double pancake winding is a highly precise technical operation that has required the development of advanced technologies and processes. The most important technologies for the fabrication of PF1 were developed at the Efremov Institute (JSC "NIIEFA"), which also designed, manufactured and tested a large part of the equipment. From the signing of the Procurement Arrangement with the ITER Organization in 2011, through the fabrication of poloidal field conductor and the latest milestone—winding completion—development and manufacturing activities have required eight years to date.

Coil manufacture is underway at the Sredne-Nevsky Shipyard near Saint Petersburg, where the finalized coil assembly will leave the plant directly atop a barge for the nearby Neva River. (See more on the Shipyard's barge/assembly platform here.) The completed coil is expected early in 2021.


return to the latest published articles