Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

Image of the week

The shine of silver

All ITER components are precious. But some look more precious than others.

The vacuum vessel thermal shield comprises nine 40° sectors. Sector #6 is pictured here, ready to be packed and shipped to ITER. (Click to view larger version...)
The vacuum vessel thermal shield comprises nine 40° sectors. Sector #6 is pictured here, ready to be packed and shipped to ITER.
A vacuum vessel sector, a toroidal field coil, a cryopump, or a divertor cassette are priceless pieces of high technology. But they could hardly pass for jewelry.

The thermal shield could. Because its mission is to protect the tokamak's superconducting coils from thermal radiation, it is coated with the most efficient of "low-emissivity" materials. And this material happens to be ... silver.

Given the size of the thermal shield (approximately 2,000 square metres), a 5- to 10-micrometre-thick silver plating on both sides requires no less than 5 tonnes¹ of the precious metal—enough to make 625,000 sterling silver rings.

A first finalized sector of the vacuum vessel thermal shield (sector #6) has left the SFA Engineering Corp in Changwon, Korea, to be delivered to ITER.

¹Five tonnes of silver will be required in the electroplating baths. The mass of silver coating the thermal shield panels is estimated at just under 800 kg total.



return to the latest published articles