Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

Image of the week

The shine of silver

All ITER components are precious. But some look more precious than others.

The vacuum vessel thermal shield comprises nine 40° sectors. Sector #6 is pictured here, ready to be packed and shipped to ITER. (Click to view larger version...)
The vacuum vessel thermal shield comprises nine 40° sectors. Sector #6 is pictured here, ready to be packed and shipped to ITER.
A vacuum vessel sector, a toroidal field coil, a cryopump, or a divertor cassette are priceless pieces of high technology. But they could hardly pass for jewelry.

The thermal shield could. Because its mission is to protect the tokamak's superconducting coils from thermal radiation, it is coated with the most efficient of "low-emissivity" materials. And this material happens to be ... silver.

Given the size of the thermal shield (approximately 2,000 square metres), a 5- to 10-micrometre-thick silver plating on both sides requires no less than 5 tonnes¹ of the precious metal—enough to make 625,000 sterling silver rings.

A first finalized sector of the vacuum vessel thermal shield (sector #6) has left the SFA Engineering Corp in Changwon, Korea, to be delivered to ITER.

¹Five tonnes of silver will be required in the electroplating baths. The mass of silver coating the thermal shield panels is estimated at just under 800 kg total.



return to the latest published articles