Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

Steve Cowley

Projecting into the coming decades

Steven Cowley, who now heads the Princeton Plasma Physics Laboratory (PPPL), gave a seminar last week at CEA-Cadarache and he had some good news regarding the spherical tokamak NSTX.

With innovations such as simplified coils, permanent magnets and toroidal field coils insulated in individual cryostats, a new breed of stellarators could play a central role in defining a future pilot power plant. (Click to view larger version...)
With innovations such as simplified coils, permanent magnets and toroidal field coils insulated in individual cryostats, a new breed of stellarators could play a central role in defining a future pilot power plant.
An offshoot of the conventional tokamak design, the National Spherical Torus Experiment was built in the late 1990s by PPPL in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle.

The machine produced its first plasma in February 1999 and operated until 2012. It was upgraded into NSTX-U between 2012 and 2015, gaining a more powerful toroidal field (1 T), plasma current (2 MA) and heating system. "This is not a little spherical torus anymore," said the head of engineering and operations at the time. "This machine has 10 times the capability of the original NSTX."

In 2016 however, as NSTX-U was ten weeks into operations, a dysfunction in one of its poloidal field coils brought everything to a halt.

Following the complete dismantling of the reactor and coils, a new team set to work and by last week a new baseline was finalized. "We now have an early finish date in April 2021," said Cowley to the CEA audience. "The spherical tokamak will be back around that time ..."

Cowley did not come to CEA (and to ITER following his conference) just to provide an update of Princeton's spherical tokamak, however.

The NSTX spherical tokamak before it was upgraded to NSTX-U. The upgraded machine was ten weeks into operations when a dysfunction in one of its poloidal field coils brought everything to a halt. NSTX-U, says Steve Cowley will be back in the spring of 2021. (Click to view larger version...)
The NSTX spherical tokamak before it was upgraded to NSTX-U. The upgraded machine was ten weeks into operations when a dysfunction in one of its poloidal field coils brought everything to a halt. NSTX-U, says Steve Cowley will be back in the spring of 2021.
Titled "Pilot plans and simplifying stellarators," his presentation dwelt on the roadmapping of fusion in the US ("like EUROfusion has done successfully") and the exploration of the role that "faster and cheaper" devices—whether bigger or smaller—could play in the pursuit of a pilot plant.

In this projection into the coming decades (the US National Academy of Science is pushing for an operational pilot plant in the 2040s), a new breed of stellarators could play a central role. "Making net electricity is easier in a stellarator," explained the head of PPPL, and innovations such as simplified coils, permanent magnets and toroidal field coils insulated in individual cryostats are options worthy of consideration.

In this perspective, the experience that PPPL accumulated in designing and manufacturing parts for the Quasi Axisymmetric (QAS) National Compact Stellarator Experiment (NCSX) in the 1990s would be highly valuable. Although budgetary considerations led to a cancellation of NCSX in 2008, QAS stands as an important concept on an "uncompleted pathway to fusion"—one that new projects could tread again in the near future.



return to the latest published articles