Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

Assembly

Zero-gravity in a cramped place

The volume of the Tokamak pit may be huge, but so are the components that need to be installed. As a result, assembly operators will have very little room to manoeuvre. One tool is under development that will aid in the assembly—in a crowded environment—of the steel elements that interlink the massive toroidal field coil cases at top and bottom.
 
Manually operated, the ''zero gravity'' assembly tool is the result of a year and a half of development at CEA-Cadarache's Magnet Infrastructure Facilities for ITER (MIFI). (Click to view larger version...)
Manually operated, the ''zero gravity'' assembly tool is the result of a year and a half of development at CEA-Cadarache's Magnet Infrastructure Facilities for ITER (MIFI).
The assembly of ITER's steel vacuum vessel will be one of the most technically challenging operations of the machine assembly phase. One by one, nine vacuum vessel "sub-assemblies"—weighing 1,200 tonnes each, will be lowered by crane onto temporary supports in the Tokamak Pit. These sub-assemblies, created on massive tools in the Assembly Hall, associate one vacuum vessel sector, its associated thermal shield panels, and two vertical toroidal field coils.

Once in place inside the assembly pit, and before vacuum vessel sector welding operations begin, each of the toroidal field coils will be connected to the next by way of "intercoil structures" located at different levels of the 17-metre-tall toroidal field coil structures.

At the top and bottom of each coil, box-type "outer intercoil structures" will link one coil case to the next. The structures are formed from large brackets welded to the coil cases, with six cylindrical pins connecting one bracket to the next (see photo, above). The 35-kilogram pins are designed to withstand the tremendous shear forces that will be exerted by the magnetic field and to compensate for minute misalignments, inevitable with such tall and massive components.

Creating a tool that would fit into the cramped space (especially at the bottom of the coil) and allow operators to precisely handle and position each of the 35-kilogram stainless steel pins has required a year-and-half of development at the Magnet Infrastructure Facilities for ITER (MIFI)—a set of workshops and laboratories jointly operated by ITER and the French Alternative Energies and Atomic Energy Commission (CEA).

An ''augmented reality'' setting superimposes a virtual 3D rendition of the coil and narrow workspace environment on the steel reality of the mockup. (Click to view larger version...)
An ''augmented reality'' setting superimposes a virtual 3D rendition of the coil and narrow workspace environment on the steel reality of the mockup.
"CEA, and specifically the Institute for Magnetic Fusion Research (IRFM) here in Cadarache, has the engineering know-how and the 'tokamak culture' that was indispensable to developing this assembly tool," explains Bertrand Peluso, the MIFI technical coordinator on CEA side.

Fabien Ferlay, the CEA mechanical engineer who led the development team at MIFI, says that the tool was "inspired by robotic arms and telemanipulators." Manually operated, it uses a zero-gravity "mass compensation" system¹ that enables the operators to exert minimal effort as they move the heavy pins into position. And it is "as compact as possible" to fit and operate within the confined space below the vertical coils.

The handling and positioning tool has been successfully demonstrated on a mockup of the box-type outer intercoil structure at MIFI. And it comes with an option, which the team presented last week to the ITER Organization and assembly contractor representatives (TAC2 contract)—an "augmented reality" setting that superimposes a virtual 3D rendition of the coil and workspace environment on the steel reality of the mockup.

The mockup and tool have now left Cadarache for the SIMIC facility in Italy. As a partner in the TAC2 machine assembly consortium, SIMIC will finalize the equipment, add functionalities for extra actions such as inserting custom shims or tightening the "superbolt" nuts, and test how the assembly sequence unfolds.

When all this is done, the mockup and tool will return to a workshop close to ITER, where future operators will train in the art of connecting, by hand, components as high as a six-storey building and weighing several hundred tonnes.

¹In a "zero-gravity" device, a system of counterweights, cogwheels and a synchronization shaft balances the mass that needs to be handled.
 



return to the latest published articles