Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Deliveries | A third magnet ready for transport to ITER

    Three ITER magnets are now in transit to ITER from different points on the globe—two toroidal field magnets and one poloidal field coil. In terms of component w [...]

    Read more

  • Heaviest load yet | Europe's coil soon to hit the road

    It's big, it's heavy, it's precious and it's highly symbolic: the toroidal field coil that was unloaded at Marseille industrial harbour on 17 March is the most [...]

    Read more

  • Coping with COVID | Adjusting to maintain progress

    COVID-19 needs no introduction. But for a 35-country collaboration like ITER, the dramatic worldwide spread of the virus has introduced an entirely new set of c [...]

    Read more

  • United States | A roadmap to fusion energy

    Hundreds of scientists across the United States—representing a broad range of national labs, universities, and private ventures—have collaborated to produce A C [...]

    Read more

  • Bolometers | Diagnostics for maintaining the power balance

    One hundred bolometer sensors, with a total of around 500 lines of sight, will be strategically placed around the ITER Tokamak to continually measure the total [...]

    Read more

Of Interest

See archived entries

Russia's ring coil

Entering the final sequence

The smallest of ITER's poloidal field coils is entering the final sequence in a long series of activities that transform cable-in-conduit superconductor into a completed magnet ready for shipment to ITER.

The stacked pancakes will be joined electrically before the entire assembly is transported to the resin impregnation station. Epoxy resin, injected over the course of several hours, fills all gaps and hardens the glass tape under the effect of heat and pressure. A ''curing'' phase completes the process, which confers rigidity to the coil and ensures electrical insulation. (Click to view larger version...)
The stacked pancakes will be joined electrically before the entire assembly is transported to the resin impregnation station. Epoxy resin, injected over the course of several hours, fills all gaps and hardens the glass tape under the effect of heat and pressure. A ''curing'' phase completes the process, which confers rigidity to the coil and ensures electrical insulation.
After successful winding, impregnation and joint assembly phases, the eight resin-hardened double pancakes of poloidal field coil #1 (PF1) are ready for stacking at the Sredne-Nevsky shipyard in Saint Petersburg. Situated on the Neva River, the shipyard enjoys direct access to the Baltic Sea and global shipping routes.

One by one, the double pancakes will be transported by overhead crane and assembled on the multi-stage assembly platform for PF1 coil fabrication that has been erected atop a stationary barge. At the end of the manufacturing process, the barge will be pulled backward out of the construction hall and into the river. There the coil and its platform will be transferred to a ship to begin the journey to ITER.

One resin-hardened double pancake already sits on supports; a second is lowered by overhead crane. ITER's smallest poloidal field coil is formed from a stack of eight double pancakes. (The five other poloidal field coils are stacked from either six, eight or nine double pancakes.) (Click to view larger version...)
One resin-hardened double pancake already sits on supports; a second is lowered by overhead crane. ITER's smallest poloidal field coil is formed from a stack of eight double pancakes. (The five other poloidal field coils are stacked from either six, eight or nine double pancakes.)
During the final fabrication steps this year, the stacked double pancakes will be joined electrically, a second vacuum impregnation will be performed to harden the overall assembly, and additional components such as clamps, protection covers, and pipes will be added.

The PF1 magnet is the smallest of ITER's six poloidal field coils, which are installed outside of the toroidal field magnet structure to shape the plasma and contribute to its stability by keeping it away from the walls.

The manufacture of a poloidal field coil, nine meters in diameter and weighing 190 tonnes, has been a ten-year undertaking, from the time the original Procurement Arrangement was signed with the ITER Organization, to the moment the coil leaves the factory for ITER (schedule in the first quarter of 2021). The most important technologies for the fabrication of PF1 were developed at the Efremov Institute (JSC "NIIEFA"), which also designed, manufactured and tested a large part of the equipment.


return to the latest published articles