Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

China successfully tests correction coil current leads

Pierre Bauer, ITER Superconductor Section

The ASIPP high temperature superconductor current leads team: (back left to right) H. Feng, L. Niu, X. Huang, T. Zhou; (front left to right) Y. Song, Y. Bi, Y. Yang, K. Ding (Click to view larger version...)
The ASIPP high temperature superconductor current leads team: (back left to right) H. Feng, L. Niu, X. Huang, T. Zhou; (front left to right) Y. Song, Y. Bi, Y. Yang, K. Ding
The high-temperature superconductor current leads are designed to transmit high currents from the room-temperature power supplies to the low-temperature superconducting coils with minimum heat load.
 
For this they use a short segment with high temperature superconductor (HTS), which can carry much higher current-densities than normal conductors such as copper. It can therefore conduct the current using much less material (smaller cross-sections), thus reducing the heat conduction.
 
The heat load reduction by the HTS current lead results in a decrease of the power input (here cryo-power), greatly improving the efficiency of the ITER device. The HTS current lead technology is therefore one of the "enabling" technologies for a fusion tokamak.
 
The HTS current leads are part of the so-called feeders, a set of ITER components provided by China.  
 
The Institute of Plasma Physics of the Chinese Academy of Sciences (ASIPP) in Hefei, China, started development of such current leads more three years ago. In Dec 2008, Newsline reported on a successful test of a 68 kA current lead prototype needed for a toroidal field coil feeder.
 
ASIPP tested two prototypes of the 10 kA high temperature superconductor current lead for the ITER correction coil feeders. (Click to view larger version...)
ASIPP tested two prototypes of the 10 kA high temperature superconductor current lead for the ITER correction coil feeders.
Now the ASIPP HTS team has successfully tested two prototypes of the 10 kA HTS current lead for the ITER correction coil feeders. On 4 July 2010, the HTS current lead was operated for several hours at the peak 10 kA current, which is 20 percent above the average current during a typical correction coil powering cycle.
 
The results were discussed at a special meeting of the ITER HTS working group at KIT in Karlsruhe, Germany, last week (15-16 July). This successful test completes the HTS current lead R&D conducted at ASIPP in preparation of the feeder final design review this coming September for which the feeder teams in China and at the ITER Organization are now feverishly preparing.


return to the latest published articles