Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Construction | Art around every corner

    Most of us have experienced it. Turning a corner in one of the Tokamak Building galleries and looking up at the graphic pattern of embedded plates in the concre [...]

    Read more

  • Machine | Ensuring port plugs will work as planned

    The stainless steel plugs sealing off each Tokamak port opening are not only massive, they are also complex—carrying and protecting some of the precious payload [...]

    Read more

  • Networks | Ensuring real-time distributed computing at ITER

    Many of the control systems at ITER require quick response and a high degree of determinism. If commands go out late, the state of the machine may have changed [...]

    Read more

  • Fusion codes and standards | Award for ITER Japan's Hideo Nakajima

    Hideo Nakajima, a senior engineer at ITER Japan, has received an award from the Japan Society of Mechanical Engineers (JSME) for his contribution to the develop [...]

    Read more

  • Machine assembly | First magnet in place

    When it travelled the ITER Itinerary last year, or during cold tests in the onsite winding facility, poloidal field coil #6 (PF6) felt rather large and massive. [...]

    Read more

Of Interest

See archived entries

Divertor inner target

Qualification milestone in Europe

A qualification program is underway in Europe to ensure the performance and manufacturability of the divertor inner vertical target—a plasma-facing component located at the intersection of magnetic field lines at the bottom of the ITER machine where particle bombardment is particularly intense. Research Instruments (Germany) is the second European manufacturer to complete a full-scale prototype.

Representatives of Fusion for Energy, Research Instruments (Germany), and Metromecanica during dimensional checks on the inner vertical target performed at Research Instruments in December 2020. (Click to view larger version...)
Representatives of Fusion for Energy, Research Instruments (Germany), and Metromecanica during dimensional checks on the inner vertical target performed at Research Instruments in December 2020.
This challenging component, one of three distinct divertor "targets," will sustain the highest head loads of the ITER machine—approximately 1000 °C in normal operating conditions and 2000 °C in off-normal conditions. As the high-energy plasma particles strike the tungsten surface of the inner vertical targets, their kinetic energy will be transformed into heat and the heat removed by active water-cooling.

The European Domestic Agency is contracting with different suppliers for the manufacturing qualification phase of its procurement program in order to ensure competition and mitigate technical risks through the development of different technologies. Among the challenge for manufacturers is the procurement of tungsten monoblocks, the bonding of the monoblocks to the copper alloy cooling tubes, the fabrication of the steel support structure, and strict dimensional requirements.

The full-scale prototype produced by Research Instruments is the second to be completed as part of the qualification program. The prototype, which measures approximately 1.5 metres and weighs 0.5 tonnes, will now be shipped to the ITER Divertor Test Facility at the Efremov Institute (Saint Petersburg) for high heat flux testing.

Read the full story on the European Domestic Agency website.



return to the latest published articles