Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • 30th ITER Council: Progress in a time of challenge and transition

    The Council chamber on the fifth floor of the ITER Headquarters building resonated once again with the sound of voices as Member representatives gathered for th [...]

    Read more

  • Open Doors Day | Back together again

    After more than two years, ITER has resumed a tradition that dates back to 2007—Open Doors Day. On Saturday 18 June, more than 50 "volunteers," staff [...]

    Read more

  • ITER Robots | Cultivating curiosity and creativity

    Robotics are everywhere. As technology develops, robots are playing an increasing role in industry, medicine, agriculture and many other fields. In ITER, the op [...]

    Read more

  • Worksite | Changing views

    Twelve years after construction work began on the ITER platform, the installation has acquired its near-final appearance. More than 85 percent of civil works ar [...]

    Read more

  • Image of the week | A steep climb

    In the days and weeks to come, the sector module that was installed in the Tokamak assembly pit on 11-12 May will be moved closer to its final position. Hydraul [...]

    Read more

Of Interest

See archived entries

Tritium Building

Work resumes

The energy-producing plasmas in ITER will be fuelled in equal measure by the hydrogen isotopes deuterium and tritium. Deuterium is a stable element that industry has produced routinely since the 1940s; tritium on the other hand is rare, expensive and slightly radioactive and, for all these reasons, must be treated with extreme care and precaution. In the ITER installation, a whole building will accommodate the different systems and equipment that store, handle and recycle this precious element.

Activity has now resumed at level L2 of the Tritium Building. (Click to view larger version...)
Activity has now resumed at level L2 of the Tritium Building.


In late 2018, following ITER Council approval of the updated project schedule and a staged approach to full power operation, major civil works in the Tritium Building were put on hold in order to focus the workforce on the Tokamak and Diagnostics Buildings.

While the Tokamak Building was being readied for machine assembly and plant equipment was being installed in the Diagnostics Building, work was frozen at the Tritium Building at level 1 (L1). Activity has now resumed and the four levels that remain to be erected (L2 through L5) should be completed in the spring of 2023.

Most of the functions of the Tritium Building are directly linked to the full-power operation of the ITER Tokamak and, as such, will not be needed before 2035. However, the building also accommodates equipment that must be operational for First Plasma, such as the gas injection system that will feed hydrogen to the vacuum vessel, or components that are part of the HVAC, cooling system, vacuum pumping systems.

The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense. (Click to view larger version...)
The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense.
Also, although they will not be needed during the first phases of machine operation, several "captive" components such as manifold segments for the neutral beam injection or disruption mitigation systems must be installed before construction progresses.

The civil work challenges for the Tritium Building are similar to those of the Tokamak Building, with areas where steel reinforcement will be exceptionally dense. The difference is in the interior design: the Tritium Building is a house of many rooms (300 in total), which means there will be many inside walls to build and close to 5,000 cubic metres of concrete to pour.



return to the latest published articles