Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

Cooling fluids

A bridge over the busy boulevard

From the buildings where they originate, the networks delivering cooling fluids and DC current to the ITER Tokamak will be supported by massive elevated steel structures referred to as "bridges," although they are more like massive industrial racks supporting hundreds of tonnes of equipment.

The first of three. This bridge connects the cryoplant (left) to the Tokamak Complex further along the road on the right. The 440-tonne structure is supported by two sets of 4.5-metre-tall pillars stabilized by pins driven deep into the platform. (Click to view larger version...)
The first of three. This bridge connects the cryoplant (left) to the Tokamak Complex further along the road on the right. The 440-tonne structure is supported by two sets of 4.5-metre-tall pillars stabilized by pins driven deep into the platform.
Three such bridges are planned on the ITER platform. The first, under construction now, will deliver cryogenic fluids from the cryoplant. Two others, whose construction will begin in early 2023, will support the busbars that deliver power from the twin Magnet Power Conversion buildings to the magnets.

Of the three, the cryobridge—whose main structure was finalized during the summer—is the most complex. Beginning perpendicular to the cryoplant, it runs for some 70 metres before abruptly turning left at a 90-degree angle to run parallel to the Assembly Hall for another 60 metres in order to reach the Tokamak Complex.

The 440-tonne cryobridge is supported by two sets of 4.5-metre-tall pillars, attached to the concrete piles by articulated pinned supports. Each concrete pile is anchored deep into the bedrock by way of 12 steel studs, measuring 12.7 metres long and 25 centimetres in diameter. Isostatic attachments, located on the building that stands between the cryoplant and the Assembly Hall, provide additional support while allowing some movement.

From this higher vantage point, the 90-degree angle built into the cryobridge is visible. The sharp turn adds complexity to the design of the structure, as the pressurized flow of cryogenic fluids at this location will cause intense traction forces on the rack's structure. (Click to view larger version...)
From this higher vantage point, the 90-degree angle built into the cryobridge is visible. The sharp turn adds complexity to the design of the structure, as the pressurized flow of cryogenic fluids at this location will cause intense traction forces on the rack's structure.
This extreme sturdiness, combined with a certain flexibility, is part of anti-seismic and blast protection measures and is also a response to the loads and forces the cryobridge will have to withstand. "The dead load on the cryobridge—meaning the total weight to be supported—is in the range of 200 tonnes," explains Benoît Villedary, the infrastructure engineer responsible for the racks. "But at the location of the 90-degree elbow where the pressurized flow of cryogenic fluids makes a sharp turn, we have to deal with the constant pushing and pulling of the cryolines, which generates intense traction forces on the rack's structure and can add a live load of more than one hundred tonnes during cryoline pressure tests."

As the cryolines are strongly insulated inside their vacuum piping, the cryobridge will be simply roofed and clad in the trademark ITER "bar-code" finish.

A building near the Assembly Hall, hosting electrical equipment lends its heavy concrete central section for additional support to the structure. Eventually, the rack will be closed in and covered with the same ''barcode-like'' cladding as the building in the background. (Click to view larger version...)
A building near the Assembly Hall, hosting electrical equipment lends its heavy concrete central section for additional support to the structure. Eventually, the rack will be closed in and covered with the same ''barcode-like'' cladding as the building in the background.
Less complex because they run straight and are not submitted to live loads, the busbar bridges have requirements of their own. Thicker than railroad rails, the aluminium busbars carry current 7,000 times more intense than a heavy-duty electrical cable and, as a consequence, are actively cooled. As the electrical sensors that monitor the temperature and flow of the cooling water operate in a temperature range of 5 to 55 degrees Celsius, it is necessary to install HVAC systems inside the closed and insulated bridges, with just a few hatches for maintenance.

Spanning the construction platform's main boulevard, more than 10 metres above the constant traffic of trucks and construction machinery, the three bridges will add an urban, almost futuristic touch to the already spectacular landscape of the ITER installation.



return to the latest published articles