Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral beam power supply | Lightning-power voltage

    In January 2021, preparatory works began for the construction of two large buildings designed to accommodate a unique set of electrical equipment. A little more [...]

    Read more

  • MITICA | Cryopump passes site acceptance tests

    Cryopumps, which play an essential role in ITER, are not what one has in mind when picturing a pump. A conventional pump creates negative pressure to suck in fl [...]

    Read more

  • Construction progress | Bird's eye views, three years apart

    Taken three years apart (February 2020-February 2023) these two aerial photographs provide a spectacular illustration of progress on the ITER construction site. [...]

    Read more

  • Tritium breeding | Korea and Europe enter partnership

    The future of fusion rests on the availably of two hydrogen isotopes, deuterium (one proton, one neutron) and tritium (one proton, two neutrons). Extracting deu [...]

    Read more

  • Diagnostic windows | Preserving the view and the vacuum

    Punctuating the inner surface of the vacuum vessel are many strategically placed windows that will be used by diagnostic systems to 'observe' the plasma. " [...]

    Read more

Of Interest

See archived entries

Manufacturing

Cold valve boxes for the ITER cryopumps

Eight sophisticated "cold valve boxes" will regulate the forced flow of supercritical helium to the eight cryopumps of the ITER vacuum system. European contractors Research Instruments (Germany) and Cryoworld (Netherlands) are manufacturing these high-tech cryogenic components that are built to withstand the hostile environment near the plasma.

At Research Instruments, the four-tonne cold valve boxes will be equipped with final electrical wiring and pneumatic connections before undergoing factory acceptance testing. © RI, August 2022 (Click to view larger version...)
At Research Instruments, the four-tonne cold valve boxes will be equipped with final electrical wiring and pneumatic connections before undergoing factory acceptance testing. © RI, August 2022
After mechanical pumps perform the initial pump-down of the ITER vacuum vessel and cryostat, powerful cryopumps will take over to attract any remaining molecules to the ultra-cold surface of their cryopanels. Eight cryopumps are planned to exhaust the vacuum vessel (6) and the cryostat (2), each one equipped with numerous "cryopanels" that will be cooled down to 4.5 K (minus 268.5 °C) by a flow of supercritical helium.

Regulating this flow of supercritical helium are the cold valve boxes associated with each pump. Equipped with cryogenic valves (25 per unit), relief systems, and sensors for pressure and temperature, these components will manage cryogenic fluids in a wide range of temperatures—from super-cold (-269 °C) to fairly hot (230 °C).

High magnetic field, radiation, and space were part of the design constraints. The position of the cold valve boxes in the machine imposed special constraints on materials and welding, while regular "regeneration periods" for each pump complicated their design.

Two cold valve boxes are ready for transportation from Cryoworld to Research Instruments, © RI, July 2022 (Click to view larger version...)
Two cold valve boxes are ready for transportation from Cryoworld to Research Instruments, © RI, July 2022
Based on a contract for the final design and fabrication of the cold valve boxes awarded by the European Domestic Agency Fusion for Energy in 2018, Research Instruments (already involved in the manufacture of the ITER cryopumps) contracted with Cryoworld BV for the torus and cryostat cold valve boxes.

Cryoworld has already shipped four of eight units to Research Instruments, where final electrical wiring and connections will be installed, and factory acceptance testing carried out. Delivery to ITER is expected before the end of the year.

See the original story on the Fusion for Energy website.



return to the latest published articles